
Adaptive control of Quadruped robot under varying load conditions

Vamshi Kumar Kurva1, Shishir Kolathaya2

Abstract— Many commonly used control frameworks rely on
the robot’s dynamic model. However, in practice, this model
often proves to be inaccurate due to factors such as incorrect
specification of the robot’s physical parameters, mechanical
wear and tear, and unforeseen changes like the addition of
extra payloads during deployment. Significant deviations in the
dynamics can severely impact the controller’s performance.
Our goal is to enhance the controller’s model in real-time
during deployment using onboard sensors and online learn-
ing. Specifically, our work focuses on quadruped locomotion
under varying load conditions. We present a model-based force
control framework that utilizes classical control techniques to
effectively handle substantial changes in the mass and center
of mass.

Keywords: Quadrupeds, legged locomotion, System Iden-
tification, Model Predictive Control(MPC), Force control

I. INTRODUCTION

The load-carrying capability of quadruped robots is a crit-
ical attribute that significantly enhances their utility across a
wide range of applications. These robots are designed to nav-
igate diverse terrains with agility and stability, making them
ideal for tasks in environments where wheeled robots may
struggle. By enabling quadruped robots to carry substantial
loads, we expand their potential uses in logistics, search and
rescue operations, military missions, and agricultural tasks.
This capability not only increases operational efficiency by
reducing the need for human intervention in hazardous or
inaccessible areas but also opens up new possibilities for
automated delivery systems and infrastructure maintenance.
Hence, improving load-carrying capability is essential for
maximizing the practical value and versatility of quadruped
robots in real-world applications.

While legged locomotion has matured, with significant
advancements in navigating uneven terrains and handling
minor disturbances robustly, there has been less emphasis
on enhancing load-bearing capability [1] [2] [3] [4] [5]
[6] [7]. However, few of the papers tried to address the
issue. For instance, [8] focuses on identifying robot inertial
parameters for high-performance model-based control. Their
method employs an online recursive approach based on
contact forces and joint angles to identify the Center of
Mass (CoM) of the base, crucial for ensuring locomotion
stability. However, the method is too slow that the robot
stops to perform the online identification when the payload
is detected and the locomotion is shown in the lab setting.

1Vamshi Kumar Kurva is associated with the department of Computer
Science and Automation, Indian Institute of Science, Bangalore.

2Shishir N. Y. Kolathaya is with the Robert Bosch Center for Cyber
Physical Systems and the Department of Computer Science & Automation,
Indian Institute of Science, Bangalore.

Fig. 1: An illustration of Stoch3 robot. The symbols FL, FR,
BL, BR, represent the front-left, front-right, back-left, and
back-right legs respectively. For simplicity, only the BL hip
frame, Ohip, BL is shown.

Alternatively, [9] adopts a different strategy by learning a
locally linear, time-varying residual model around the robot’s
current trajectory instead of directly identifying physical
parameters. This residual model, combined with a nominal
model, supports real-time model-based control, as demon-
strated experimentally with a 10 kg payload on a 12 kg
A1 robot. Nonetheless, since the load distribution remains
symmetric around the robot base, it minimally affects the
CoM. [10] integrates L1 adaptive control techniques into a
force control framework to handle model uncertainties. Their
controller deployed on the A1 robot can carry 6 Kg payload
stably while walking. In contrast, [11] proposes a robust
min-max model predictive control (MPC) approach based
on robust optimization principles for handling uncertain
conditions.

In all the methods mentioned above, the payload is typi-
cally attached very near the center of the torso, thus shifting
the CoM by a very small amount. From our experiments, we
observed that significant changes in the CoM pose substantial
challenges, occasionally leading to controller failures and
causing the robot to fall – issues that do not occur with
minor CoM changes. Therefore, our objective is to develop
a controller capable of handling substantial changes in the
CoM. Our contributions are as follows:

• We propose a model-based force controller equipped
with an Online System ID to determine the payload
mass and CoM of the robot in real-time.

• The proposed controller is validated in simulation using
Pybullet physics engine [12] on a custom Stoch3 robot.

• We demonstrate that the controller can accurately track
given commands even with significant CoM shifts.

The paper’s organization is as follows: Section II describes
the robot configuration and specifications. Section III de-
scribes force-based controller. Section IV presents simulation

results, assessments. Finally, Section V concludes our work.

II. ROBOT DESCRIPTION

This section will briefly describe the configuration of the
robot used in the simulation. Stoch-3, as shown in Fig 1, is
a custom-built dynamic quadruped robot developed for rapid
prototyping of controllers. The robot has 4 legs, each leg is
equipped with 3 actuators to give the foot 3 Degrees of Free-
dom (DoF). Thus, the robot model consists of 6 floating and
12 actuated DoF. We treat each leg independently to derive
analytical relations for forward and inverse kinematics. Here
q1, q2, and q3 represent abduction, hip, and knee joints and
form a serial-3R kinematic chain as shown in Fig 1. Some
system parameters of the robot are presented in the following
table I.

Parameter Value Unit
M 25 kg
Ixx 0.043 kgm2

Iyy 0.1127 kgm2

Izz 0.2288 kgm2

Body length 0.541 m
Body width 0.203 m

abduction length 0.123 m
hip length 0.297 m

shank length 0.347 m

TABLE I: System Parameters of the Stoch3 Robot. M is the
total robot of the mass, Ixx, Iyy, Izz are the diagonal entries
of the inertia matrix

III. FORCE CONTROL WITH ONLINE SYSID

This section provides an overview of the force control
framework. The control architecture comprises several mod-
ules: ConvexMPC, PD controller, and Online SysID, as
illustrated in Fig 2. We employ ConvexMPC [2] as a high-
level controller to track the command velocities provided by
a joystick. The high-level controller uses a gait scheduler that
defines the gait timing and contact sequence for each leg. It
then determines the desired foot forces for the stance leg and
foot positions for the swing leg based on user commands.
These high-level commands are converted into torques by
the low-level controller. For the swing legs, foot positions
are tracked using PD control, while for the stance legs,
desired torques are generated using the leg Jacobian, which
relates joint torques to end-effector forces. Online SysID is
employed to identify changing parameters of interest using
past data from the controller. We will briefly explain all the
components below

A. ConvexMPC

Let x = (Θ, p, ω, ṗ, g) represent the state of the base
where p, ṗ denote the linear position and velocity, Θ, ω, g
denote the angular position, velocity and the acceleration
due to gravity respectively. Θ = (ϕ, θ, ψ)

T are the Euler
angles where ϕ is the roll, θ is the pitch, and ψ is the
yaw. Additionally, let ri = (rix, riy, riz) be the position

of the ith foot with respect to the CoM of the torso
and fi = (fix, fiy, fiz) be the control input for the ith

leg. The inertial effect of the legs is ignored due to their
lightweight design, allowing the robot to be modeled as a
Single Rigid Body (SRB). This SRB model, combined with
certain approximations in the rotational dynamics, results in
the following linear time-varying dynamics:

d

dt


Θ
p
ω
ṗ
g

 =


03 03 RT

z (ψ) 03
03 03 03 13
03 03 03 03
03 03 03 03
0 0 0 0


︸ ︷︷ ︸

A(t)


Θ
p
ω
ṗ
g



+


03 03 03 03
03 03 03 03

I−1r̂1 I−1r̂2 I−1r̂3 I−1r̂4
13/m 13/m 13/m 13/m
0 0 0 0


︸ ︷︷ ︸

B(t)


f1
f2
f3
f4



where Rz(ψ) represent positive rotation of ψ about
z−axis, u = (f1, f2, f3, f4), A ∈ R13×13 depends only
on the orientation and B ∈ R13×12 depends on mass m,
foot step locations ri and inertia matrix I. MPC then solves
for the Ground Reaction Forces (GRFs) needed to track
the desired command velocities by solving the following
optimisation problem over a finite horizon N

min
u

N−1∑
k=0

(
∥xk − xk,ref∥2Q + ∥uk∥2R

)
subject to xk+1 = Akxk +Bkuk, k = 0, . . . , N − 1

ck ≤ Ckuk ≤ ck, k = 1, . . . , N − 1

x0 = x(t)

Dkuk = 0, k = 1, . . . , N − 1

where xk,uk are the state and control inputs at time
k, Q,R are positive definite matrices of weights, Ak,Bk

represents the discrete time dynamics, ck,Ck, ck represents
the inequality constraints on the control input, and Dk is a
matrix that selects the GRFs corresponding to swing legs.

After finding an optimal sequence of control inputs for the
next N steps, only the first optimal action is executed, the
system goes into the next state and the process repeats. Since
MPC only solves for GRFs and not joint torques, it need not
be aware of leg kinematics and hence can be thought of as
a high-level controller.

B. Online SysID

As previously discussed, the dynamics of the robot are
influenced by system parameters such as mass, Center of
Mass (CoM), inertia, and foot positions relative to the CoM.
Accurately identifying these varying system parameters en-
hances the controller’s ability to effectively track commands.
Let D = {(xi, ui); i = t − 1, t − 2, ..1, 0} denote the data
buffer containing state-action pairs up to time t − 1. We

Fig. 2: Overview of the proposed force control framework. Joystick commands consists of (vx, vy, wz). τff is the feed-
forward torque and τfb is the feedback torque. SysID module updates the system parameters once every few iterations and
the updated parameters are plugged into the MPC controller.

employ heuristic-based algorithms to find the changing mass
and CoM using the data collected from the controller.

Algorithm 1 Mass Estimation
Input: Data buffer D, batch size, control time step dt
Output: Estimated mass
Initialization: mass = []
For i = t− 1, t− 2, . . . , t− batch size:

Estimate p̈(i) = ṗ(i+1)−ṗ(i)
dt + (0.0, 0.0,−9.8)T

Fz(i) = f1z(i) + f2z(i) + f3z(i) + f4z(i)

mass(i) = Fz(i)
p̈z(i)

Append mass(i) to mass
Return Average(mass)

The mass estimation method, outlined in Algorithm 1,
calculates the robot’s mass by dividing the z-direction force
acting on the robot by its z-direction acceleration at each
time-step. These individual estimates are averaged to obtain
a reliable measure. This approach specifically focuses on
z-direction forces and accelerations to mitigate noise intro-
duced by the finite difference method used for acceleration
calculation, which is stabilized by incorporating gravitational
acceleration.

Another critical parameter of interest is the CoM shift
relative to the torso’s center. Under no-load conditions, we
assume the CoM aligns with the geometric center of the
torso. However, under load conditions, Algorithm 2 describes
how the CoM shift is determined. The estimation process
identifies specific torso points where moments about the x
and y axes are zero, assuming negligible GRFs in the x and
y directions compared to the z-direction.

Algorithm 2 CoM Shift Estimation
Input: Data buffer D, batch size, control time step dt
Output: Estimated CoM shift
Initialization: δ = []
For i = t− 1, t− 2, . . . , t− batch size:

Estimate Fz(i) = f1z(i) + f2z(i) + f3z(i) + f4z(i)

δx = r1x(i)f1z(i)+r2x(i)f2z(i)+r3x(i)f3z(i)+r4x(i)f4z(i)
Fz(i)

δy =
r1y(i)f1z(i)+r2y(i)f2z(i)+r3y(i)f3z(i)+r4y(i)f4z(i)

Fz(i)

Append (δx, δy, 0.0) to δ
Return Average(δ)

Once the CoM shift is computed, the foot positions are
adjusted relative to the CoM rather than the center of the
base frame. The updated mass and foot positions are then
used in computing the GRFs for the subsequent time step.

C. Low-level controller
Torques for each leg are generated differently depending

on whether the leg is in the swing or stance phase. For the
swing leg, desired foot positions are converted to desired
joint angles qd using inverse kinematics. PD control is then
used to track the desired joint angles which generates the
feedback torques:

τfb = kp ∗ (qd − q) + kd ∗ (0− q̇)

where kp, kd are proportional and derivative gains, q, q̇ are
the current joint angle and velocities. For the stance leg,
desired GRFs are converted to the required feed-forward
torques using the Jacobian equation

τff = −J(q)T f

where J(q) is the Jacobian matrix evaluated at joint position
q and f is the desired GRF.

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Results of test1 in Pybullet: In the beginning, an unknown payload is put on the robot close to the center of the
base frame and the mass is changed over time. (a) simulation scenario in pybullet (b) actual and estimated CoM shifts when
using sysID (c) height tracking with base controller (d) height tracking with our controller (e) velocity tracking of base
controller (f) velocity tracking of our controller

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Results of test2 in Pybullet: In the beginning, an unknown payload is put on the back of the robot and the mass
is changed over time. (a) simulation scenario in pybullet (b) actual and estimated CoM shifts when using sysID (c) height
tracking with base controller (d) height tracking with our controller (e) velocity tracking of base controller (f) velocity
tracking of our controller

IV. RESULTS
To validate our approach, we used the PyBullet physics

engine with a custom Stoch3 URDF model as our environ-
ment. In the simulation, we have access to all state variables,
including joint positions and velocities. ConvexMPC serves
as our base controller and is configured as follows:

• MPC runs at a frequency of 250 Hz and the PD
controller at 1 kHz.

• Desired body height is set to 0.42 meters
• The controller always runs trot gait.
We compared the base controller and the adaptive con-

troller under the following conditions:
• Test1: The payload is placed near the center, with its

mass changing over time, resulting in less CoM shift.
• Test2: The payload is positioned at one of the corners,

with its mass varying over time, resulting in a significant
CoM shift.

The performance of the controller is evaluated based on its
ability to track the commanded velocities and maintain the
commanded height.

A. CoM Shift is less

In this scenario, we initially placed a payload of 2 kg at
a distance of (0.1, 0.1) meters from the center of the base
frame. The payload mass was then incrementally increased
until it reached 18 kg, followed by a similar decrement back
to 2 kg. Consequently, the CoM shift varied correspondingly,
reaching its maximum when the payload mass was high-
est and its minimum when the payload mass was lowest.
Tracking performance under these conditions is presented in
Fig 3. The adaptive controller clearly outperforms the base
controller in tracking both height and velocity commands.
However, the base controller’s velocity tracking is compara-
ble to our controller due to the minimal CoM shift.

B. CoM shift is more

This setting is similar to the previous one, but the initial
payload location is (0.25, 0.17) meters from the center of
the base frame. As shown in Fig 4, the CoM shift is more
pronounced in this case. The base controller struggles to
track velocity commands, causing the robot to drift toward
the CoM, and height tracking deteriorates with increasing
payload mass. However, by identifying the changing param-
eters, our adaptive controller successfully tracks both height
and velocity commands.

V. CONCLUSION
In this work, we presented a force-based controller capable

of adapting to changes in load conditions. We employed
a system identification technique to identify changing pa-
rameters of interest using data collected from the base con-
troller in real-time. We validated our controller in PyBullet
simulator under two different test conditions, demonstrating
superior command tracking compared to the base controller.
For future work, we plan to explore reinforcement learning-
based methods to adapt to various other uncertainties and
unstructured terrains.

REFERENCES

[1] H.-W. Park, P. Wensing, and S. Kim, “High-speed bounding with the
mit cheetah 2: Control design and experiments,” The International
Journal of Robotics Research, vol. 36, p. 027836491769424, 03 2017.

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1–9.

[3] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,
“Perceptive locomotion through nonlinear model predictive control,”
08 2022.

[4] Y. Ding, A. Pandala, and H.-W. Park, “Real-time model predictive
control for versatile dynamic motions in quadrupedal robots,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 8484–8490.

[5] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid
motor adaptation for legged robots,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.04034

[6] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot
control for generalization with multiplicity of behavior,” 2022.

[7] I. M. A. Nahrendra, B. Yu, and H. Myung, “Dreamwaq: Learning
robust quadrupedal locomotion with implicit terrain imagination via
deep reinforcement learning,” 2023.

[8] G. Tournois, M. Focchi, A. Del Prete, R. Orsolino, D. G. Caldwell,
and C. Semini, “Online payload identification for quadruped robots,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 4889–4896.

[9] Y. Sun, W. L. Ubellacker, W.-L. Ma, X. Zhang, C. Wang, N. V.
Csomay-Shanklin, M. Tomizuka, K. Sreenath, and A. D. Ames,
“Online learning of unknown dynamics for model-based controllers
in legged locomotion,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 8442–8449, 2021.

[10] M. Sombolestan, Y. Chen, and Q. Nguyen, “Adaptive force-based
control for legged robots,” CoRR, vol. abs/2011.06236, 2020.
[Online]. Available: https://arxiv.org/abs/2011.06236

[11] S. Xu, L. Zhu, H.-T. Zhang, and C. P. Ho, “Robust convex model
predictive control for quadruped locomotion under uncertainties,”
IEEE Transactions on Robotics, vol. 39, no. 6, pp. 4837–4854, 2023.

[12] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

https://arxiv.org/abs/2107.04034
https://arxiv.org/abs/2011.06236

	INTRODUCTION
	Robot Description
	Force control with Online SysID
	ConvexMPC
	Online SysID
	Low-level controller

	RESULTS
	CoM Shift is less
	CoM shift is more

	CONCLUSION
	References

