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Abstract— Over the decades, kinematic controllers have
proven to be practically useful for applications like set-point
and trajectory tracking in robotic systems. To this end, we
formulate a novel safety-critical paradigm by extending the
methodology of control barrier functions (CBFs) to kinematic
equations governing robotic systems. We demonstrate a purely
kinematic implementation of a velocity-based CBF, and subse-
quently introduce a formulation that guarantees safety at the
level of dynamics. This is achieved through a new form of
CBFs that incorporate kinetic energy with the classical forms,
thereby minimizing model dependence and conservativeness.
The approach is then extended to underactuated systems.
This method and the purely kinematic implementation are
demonstrated in simulation on two robotic platforms: a 6-DOF
robotic manipulator, and a cart-pole system.

I. INTRODUCTION

Kinematic control provides a powerful method for achiev-
ing desired behaviors on a large class of robotic systems
[2], [3], [4]. Ensuring safety for these kinematic systems
is widely researched area. Artificial potential field methods
were formulated as a way to reach goal positions while
avoiding obstacles utilizing an attractive force from the goal
and a repulsive force from the obstacles [5]. In [6], the
authors improve upon this idea by constructing the problem
as a quadratic progarm (QP), where the objective is to track
the desired goal subject to geometric constraints on the
velocities to prevent collisions. While this work is effective
in practice, and has been extended to multi-objective task
structures [7], it can be made more general and more formal
through control barrier functions (CBFs) [8].

CBFs provide a framework for formally incorporating
general safety constraints into quadratic programs. This
was first applied to adaptive cruise control, and has since
been utilized in a variety of application domains: automotive
safety [9], robotics [10], [11] and multi-agent systems [12],
[13]. See [14] for a recent survey. While CBFs can be im-
plemented in a purely kinematic fashion for robotic systems
[15], as will be demonstrated in this work, it only guarantees
safety kinematically, like the above methods, not for the true
underlying dynamical system. However, when the dynamics
are used, it becomes heavily model-dependent, and the safety
guarantees depend on the validity of the model.

Recently, energy-based reciprocal control barrier functions
were introduced [16] as a means to provide robust safety
guarantees for fully-actuated robotic platforms with model
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Fig. 1. A 6-DOF manipulator safely avoiding an obstacle with
energy-based control barrier function. The CBF intervention is
shown in red. A video can be found at [1].

uncertainty. This was done by utilizing bounds on the inertia
and Coriolis-centrifugal matrices, as well as the gravity
vector, and providing safety guarantees for the worst-case
scenario. While the resulting QP formulation yielded robust-
ness in safety, it does not have well-defined behavior on the
boundary of the set and outside of it, making it difficult to
implement in practice.

In this paper, an alternative formulation for the energy-
based CBFs is introduced for zeroing control barrier func-
tions, which are well defined on the boundary and exterior
of the set. Using this formulation, we modify the traditional
torque-based formulation into a kinematic control problem,
and showcase several simplifications that can be made to
reduce model dependence. The resulting formulation allows
for formal safety guarantees at the dynamical system level,
while allowing for simple implementation with kinematic
controllers. This analysis is then extended to the class of
underactuated robotic systems. The results are demonstrated
in a 6-DOF manipulator and a cart-pole system (see Figs. 1
and 4), wherein different levels of uncertainties are incorpo-
rated and safety-critical kinematic control laws are applied.

This paper is structured as follows. Section II provides
the necessary background on CBFs. Section III demonstrates
safety-critical velocity control of purely kinematic systems,
with no regard for the underlying dynamics of the system.
In Section IV, we begin with the formulation of an energy-
based CBF that guarantees the safety of a robotic system
at the dynamics level. Then, this formulation is modified
to guarantee safety of the dynamical system for kinematic
control inputs, in this case a desired velocity command.
The results are demonstrated in simulation on a 6 DOF
robotic manipulator, and a comparison is made to the purely
kinematic case. Finally, in Section V, the underactuated
case is explored, and the method is demonstrated with a
simulation of a cart-pole system.



II. BACKGROUND

Consider a nonlinear control system in affine form:

ẋ = f(x) + g(x)u (1)

where x ∈ D ⊂ Rn is the state, and u ∈ U ⊆ Rm the input.
Assume that the functions f : Rn → Rn and g : Rn →
Rn×m are continuously differentiable. We are interested in
safety defined as the forward invariance of a set S ⊂ D.
In particular, given a Lipschitz continuous control law u =
k(x), the resulting closed loop system ẋ = fcl(x) = f(x) +
g(x)k(x) yields a solution x(t), with initial condition x(0) =
x0. The system is safe with respect to the controller u = k(x)
if:

∀ x0 ∈ S ⇒ x(t) ∈ S ∀ t ≥ 0.

Definition 1 ([8]). Let S ⊂ D ⊂ Rn be the 0-superlevel set
of a continuously differentiable function h : D → R:

S = {x ∈ Rn : h(x) ≥ 0},
∂S = {x ∈ Rn : h(x) = 0},

Int(S) = {x ∈ Rn : h(x) > 0}.

Then h is a control barrier function (CBF) if ∂h
∂x (x) 6= 0 for

all x ∈ ∂S and there exists an extended class K function ([8,
Definition 2]) α such that for the control system (1) and for
all x ∈ S:

sup
u∈U

[
Lfh(x) + Lgh(x)u︸ ︷︷ ︸

ḣ(x,u)

]
≥ −α(h(x)), (2)

where Lfh(x) = ∂h
∂xf(x) and Lgh(x) = ∂h

∂xg(x). We say
that h is a control barrier function (CBF) on S if (2) holds
for all x ∈ S (but not necessarily on all of D).

The main result with regard to control barrier functions is
that the existence of a control barrier function implies that
the control system is safe:

Theorem 1 ([8]). Let S ⊂ Rn be a set defined as the
superlevel set of a continuously differentiable function h :
D ⊂ Rn → R. If h is a control barrier function (CBF)
on S, then any Lipschitz continuous controller satisfying:
ḣ(x, u(x)) = Lfh(x) + Lgh(x)u(x) ≥ −α(h(x)) renders
the set S safe for the system (1).

Controller Synthesis. The main idea with barrier functions
is to use them as safety filters which take in a desired control
input, udes(x, t), and modify this input in a minimal way so
as to guarantee safety. This can be formalized as a Quadratic
Program (QP):

u∗(x) = argmin
u∈U⊆Rm

‖u− udes(x, t)‖2 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)).

This controller has an explicit solution as noted by the
following lemma.

Lemma 1. Let h be a control barrier function for the control
system (1) and assume that U = Rm. Then the explicit
solution to the QP (CBF-QP) is given by:

u∗(x, t) = udes(x, t) + usafe(x, t), (3)

where usafe minimally modifies udes depending on if the
nominal controller keeps the system safe, i.e., the sign of
Ψ(x, t;udes) := ḣ(x, udes(x, t)) + α(h(x)), according to:

usafe(x, t) =

{
− Lgh(x)

T

Lgh(x)Lgh(x)T
Ψ(x, t;udes) if Ψ(x, t;udes) < 0

0 if Ψ(x, t;udes) ≥ 0

(4)

Proof. In [17], an explicit form for (CBF-QP) was found
using the KKT conditions when udes(x, t) = 0. The
same proof with a modified cost yields the desired result.
Specifically, the dual-primal feasibility and complementary
slackness conditions remain unchanged. Following [17, Proof
of Theorem 8], the stationary condition becomes: u∗(x, t) =
µ(x)Lgh(x)T + udes(x, t), where µ comes from the KKT
conditions. This results in the closed form solution. Finally,
safety is guaranteed from Theorem 1.

III. SAFETY-CRITICAL KINEMATIC CONTROL

In this section, we consider safety-critical kinematic con-
trol. We provide an example of velocity-based kinematic
control of a robotic manipulator, and analyze its ability to
maintain safety. We are interested in kinematic mappings of
the form: x = y(q) where q ∈ Q ⊂ Rk, x ∈ D ⊂ Rn and
thus y : Q→ D. Here, we assume that k ≥ n, i.e., that there
are more degrees of freedom than tasks. Here x is the vector
of “outputs” or “task” variables, i.e., a vector of elements
which we wish to control, and q is a vector consisting of
the systems configuration, e.g., angles of the robotic system.
The evolution of the task variables is therefore given by:

ẋ = Jy(q)q̇. (5)

In kinematic control, we view q̇ as the input to the system.
Specifically, we wish to determine a feedback control law:
q̇ = K(q, t) that achieves the desired properties.

Kinematic Trajectory Tracking. Suppose that we have a
desired trajectory xd(t) for the task vector. The goal is to
track this trajectory, i.e., for e(t) = x(t) − xd(t) → 0 with
x(t) satisfying (5). Differentiating this yields:

ė = Jy(q)q̇ − ẋd(t).

Therefore, for γ > 0, if we choose q̇ such that Jy(q)q̇ =
ẋd(t) − γe, we have ė = −γe ⇒ e(t) = exp(−γt)e(0).
As a result, if we wish to track a trajectory, we can pick:

q̇(x, t) = Jy(q)† (ẋd(t)− λe) , (6)

with Jy(q)† = Jy(q)T (Jy(q)Jy(q)T )−1, the Moore-Penrose
(right) pseudoinverse, assumed to be well defined.

Safety-Critical Control. Equipped with q̇, which will now
serve as the desired (potentially unsafe) input q̇des, we can
now impose safety. We have the following.



Lemma 2. Consider a kinematic safety constraint h : Q ⊂
Rk → R and the corresponding safe set S = {q ∈
Q : h(q) ≥ 0} defined as the 0-superlevel set of h. If
Jh(q) 6= 0, then the following velocity based controller:

q̇∗(q, t) = argmin
q̇∈Rk

‖q̇ − Jy(q)† (ẋd(t)− λ(y(q)− xd(t))) ‖2

s.t. ḣ(q, q̇) = Jh(q)q̇ ≥ −α(h(q)), (7)

ensures safety, i.e., S is forward invariant. Moreover, this
has a closed form solution given by

q̇∗(x, t) = q̇des(q, t) +

{
−Jh(x)†Ψ(q, t; q̇des) if Ψ(q, t; q̇des) < 0
0 if Ψ(q, t; q̇des) ≥ 0

(8)

where Ψ(x, t; q̇des) = Jh(q)q̇des(q, t) + α(h(q)).

Therefore, the controller (8) utilizes q̇des whenever it is
safe, i.e., when Ψ(q, t; q̇des) ≥ 0. Conversely, in the case
when q̇des is unsafe the controller takes over and enforces
ḣ = Jh(q)q̇∗(q, t) = −α(h) until q̇des is safe again.

Example 1 (Manipulator Obstacle Avoidance). Consider
a 6-DOF industrial manipulator (see Fig. 1) attempting to
track a desired trajectory xd(t) using the desired velocity
given in (6) with its end-effector. Note that CBFs have been
successfully applied to robot manipulators in [10], [11], [15]
via kinematic control. Suppose that the manipulator needs to
complete this trajectory while avoiding an obstacle located
at (x0, y0, z0). Thus, in the set S = {q | h(q) ≥ 0}, the
end-effector must be at least a distance d from the obstacle.
A control barrier function representing this safety constraint
is

h(x) = (x− x0)2 + (y − y0)2 + (z − z0)2 − d2. (9)

By substituting this into (7) or (8), we obtain the results
shown in Figure 2. Since this CBF does not take into account
the system dynamics or the tracking ability of the low-level
controller, safety is not guaranteed, but it can be achieved
by proper choice of α. In this case, with scalar multiple
α ∈ [0.5, 1], the obstacle is avoided, but not for α ∈ [2, 3].

IV. FROM KINEMATICS TO DYNAMICS

We now wish to establish the main result of this paper:
that guarantees safety for the dynamics of a robotic system.
To do this, we first introduce an alternative formulation of

Fig. 2. Velocity-based kinematic barrier function on the 6 DOF
manipulator. Safety depends on choice of α. The times to complete
these tasks are shown in the video [1] and listed in Fig. 3.

the energy-based CBFs shown in [16] for robotic systems.
We consider Euler-Lagrangian dynamics of the form:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu (10)

where B ∈ Rk×m is the actuation matrix, D,C,G are the
inertia, Coriolis-centrifugal and gravity matrices respectively
of appropriate dimensions. We assume m ≤ k, wherein m =
k with B invertible corresponds to full actuation. From the
equations of motion, we can obtain a control system of the
form (1). We will first discuss the fully actuated case, and
the underactuated case will be discussed in Section V.

Energy-based Safety Constraints. We begin by formu-
lating a safety-critical controller for fully actuated robotic
systems given kinematic safety constraints—thus bridging
the gap from kinematic to dynamics. This will be achieved
via a “dynamically consistent” extension to the desired safe
set. This is similar to the extensions shown in [14], [18]
for higher relative degree systems, but leverages the kinetic
energy of the system. Specifically, to dynamically extend the
CBF, we note that the inertia matrix, D(q) is a symmetric
positive definite matrix, D(q) = D(q)T � 0, and thus:

λmin(D(q))‖q‖2 ≤ qTD(q)q ≤ λmax(D(q))‖q‖2

where λmin, λmax are the min and max eigenvalues (which
are dependent on q) of D(q) which are necessarily positive
due to the positive definite nature of D(q).

Definition 2. Given a kinematic safety constraint expressed
as a function h : Q ⊂ Rk → R only dependent on q, and the
corresponding safe set: S = {(q, q̇) ∈ Q×Rk : h(q) ≥ 0},
the associated energy-based safety constraint is defined as:

hD(q, q̇) := −1

2
q̇TD(q)q̇ + αeh(q) ≥ 0 (11)

with αe > 0. The corresponding energy-based safe set is:

SD := {(q, q̇) ∈ Q× Rk : hD(q, q̇) ≥ 0}. (12)

This construction is similar to the augmentation of kinetic
energy in [16] for reciprocal control barrier functions. While
the reciprocal formulation has the advantage of having no
added conservatism, due to the set remaining unchanged,
it does not have well-defined behavior on the boundary
of the set and outside of it, making it less popular for
implementation. In fact, we now will show that the energy
based constraint in Definition 2 is a valid (zeroing) control
barrier function (CBF), thereby allowing for a new class of
QPs that guarantee safety. First, we establish the relationship
between SD and S.

Proposition 1. Consider a kinematic safety constraint, h :
Q ⊂ Rk → R, with corresponding safe set S, and the
associated energy-based safety constraint, hD, as given in
Definition 2 with corresponding safe set SD. Then

(i) SD ⊂ S, (ii) Int(S) ⊂ lim
αe→∞

SD ⊂ S. (13)

Proof. To establish (i), we simply note that

SD ⊂ {(q, q̇) ∈ Q× Rk : h(q) ≥ 1

2

λmin(D(q))

αe
‖q̇‖2 ≥ 0} ⊂ S.



To establish (ii), we first note that

SD(αe) = {(q, q̇) ∈ Q× Rk : h(q) ≥
1
2 q̇
TD(q)q̇

αe
},

where here we made the dependence of SD on αe explicit.
Consider an increasing sequence αie where i ∈ N and
limi→∞ αie → ∞. This results is a nondecreasing sequence
of sets: {SD(αie)}∞i=1:

αie < αi+1
e ⇒

1
2 q̇
TD(q)q̇

αie
>

1
2 q̇
TD(q)q̇

αi+1
e

⇒ SD(αie) ⊂ SD(αi+1
e ).

As a result:

lim
i→∞

1
2 q̇
TD(q)q̇

αie
= 0 ⇒ lim

i→∞
SD(αie) =

⋃
i∈N
SD(αie) ⊃ Int(S),

and SD(αie) ⊂ S for all i ∈ N.

Main result. We now have the necessary constructions
to present the main result of this paper—a largely model
independent safety-critical controller that ensures the forward
invariance of SD and, thus, S in the limit for αe sufficiently
large. We will establish this by showing that hD is a valid
CBF and that ḣD only depends on the kinematics, the
gravity vector G(q), and the inertial matrix D(q). This makes
the controller more robust to uncertainty in the dynamics
than full model based controllers—which would require
knowledge of the Coriolis-centrifugal matrix, C(q, q̇).

Theorem 2. Consider a robotic system (10), assumed to
be fully actuated with B invertible, and a kinematic safety
constraint h : Q → R with corresponding safe set S =
{(q, q̇) ∈ Q × Rk : h(q) ≥ 0}. Let hD be the energy based
constraint defined as in (11) with corresponding safe set SD
as given in (12). Then hD is a control barrier function on
SD and given a desired controller udes(x, t), the following
controller for all (q, q̇) ∈ SD:

u∗(q, q̇, t) = argmin
u∈Rm

‖u− udes(q, q̇, t)‖2

s.t. −q̇TBu+G(q)T q̇ + αeJh(q)q̇︸ ︷︷ ︸
ḣD(q,q̇,u)

≥ −α(hD(q, q̇)),

(14)

guarantees forward invariance of SD, i.e., safety of SD.
Additionally, it has a closed form solution:

u∗(x, t) = udes(q, q̇, t) +

{
BT q̇
‖BT q̇‖2 Ψ(x, t;udes) if Ψ(x, t;udes) < 0

0 if Ψ(x, t;udes) ≥ 0

(15)

where

Ψ(x, t;udes) := q̇T (αeJh(q)T +G(q)−Budes(x, t)) + α(hD(q, q̇)).

It is interesting to note that hD is a CBF on SD without
requiring that h has relative degree 1, i.e., one need not
require that Jh(q) 6= 0 (except on ∂S) as in Lemma 2. This
reinforces the idea that these energy-based control barrier
functions are natural extensions for relative-degree 2 systems.

Proof of Theorem 2. Differentiating hD along solutions
yields (and suppressing the dependence on q and q̇):

ḣD = −q̇TDq̈ − 1

2
q̇T Ḋq̇ + αeJhq̇ (16)

= q̇T (Cq̇ +G−Bu)− 1

2
q̇T Ḋq̇ + αeJhq̇

=
1

2
q̇T
(
−Ḋ + 2C

)
q̇ − q̇TBu+GT q̇ + αeJhq̇

= −q̇TBu+GT q̇ + αeJhq̇

where the last equality follows from the fact that Ḋ− 2C is
skew symmetric (see [19, Lemma 4.2]). To establish that hD
is a CBF, we need only show that (14) has a solution since
the inequality constraint in (14) implies that (2) is satisfied
in Definition 1. As a result of Lemma 1, the solution to (14)
is given by (3) . Note that

LfhD(q, q̇) = (αeJh(q)+G(q)T )q̇, LghD(q, q̇) = −q̇TB.

Since (3) has a LghLghT term in the denominator, to show
that (3) is well defined, we need to establish that:

LghD(q, q̇) = −q̇TB = 0 ⇒ LfhD(q, q̇) + α(hD(q, q̇)) ≥ 0.

Yet q̇TB = 0 implies that q̇T = 0 since B is invertible and
therefore LfhD(q, q̇) = 0 and since (q, q̇) ∈ SD it follows
that hD(q, q̇) ≥ 0 and hence α(hD(q, q̇)) ≥ 0 implying that
(3) is well defined and thus hD is a CBF. Finally, the forward
invariance of SD follows from the results of Lemma 1 and
Theorem 1.

Having established Theorem 2, the following corollary
demonstrates how to further reduce model dependence.

Corollary 1. Under the conditions of Theorem 2, if there
exists a cu > 0 such that cu ≥ 1

2λmax(D(q)) then replacing
the safety constraint (14) in the safety-critical QP with:

−q̇TBu+G(q)T q̇ + αeJh(q)q̇︸ ︷︷ ︸
ḣD(q,q̇,u)

≥ −α(−cu ‖q̇‖2 + αeh(q)),

(17)

implies safety of SD. Moreover, if in addition ‖G(q)‖ ≤ cu,
for a large enough cu > 0 (perhaps larger than previously
determined), then the constraint (14) can be replaced by:

αeJh(q)q̇ − q̇TBu− cu|q̇| ≥ −α
(
−cu ‖q̇‖2 + αeh(q)

)
.

(18)

wherein safety of SD is guaranteed.

Proof. It can be verified that −α(−cu ‖q̇‖2 + αeh(q)) ≥
−α(− 1

2λmax(D(q)) ‖q̇‖2+αeh(q)) ≥ −α(hD(q, q̇)), which
means that (17) =⇒ (14). The second inequality, (18),
follows from the bound on the gravity vector G.

Connections with kinematic control. The goal is to
now connect the previous constructions with the kinematic
controllers defined in Section III. Often, controllers can only
be implemented as desired position and velocity commands
that are passed to embedded level PD controllers. Moreover,



Fig. 3. Energy-based kinematic CBF on the 6 DOF manipulator. Safety is guaranteed regardless of the choice of αe, but performance
improves as αe increases. The times taken to complete the second portion of the task, near the obstacle, are 10.07, 8.06, and 6.86 sec for
αe = {250, 500, 1500}, compared to values of 7.60 to 7.94 for the purely kinematic case and 5.79 for CBF-free case. See video [1].

minimizing the difference between the desired and the safe
robot velocities often leads to more desirable behaviors with
the lower-level commands, which affect the system in much
more complex ways. As such, we consider a controller:

u = −Kvel(q̇ − q̇∗d(q, q̇, t)) (19)

where q̇∗d(q, t) is a desired velocity signal that enforces safety
while trying to achieve tracking as in the case of Lemma 2
wherein we have a desired velocity based tracking controller:
q̇des(q, t) := Jy(q)† (ẋd(t)− λ(y(q)− xd(t))) for λ > 0.
The following is a result of the direct application of Theorem
2 in the context of the controller (19).

Theorem 3. Consider a robotic system (10), and assume it is
fully actuated. Given a kinematic safety constraint h : Q→
R and the associated dynamically consistent extended CBF
hD : Q × R → R as given in (11) with associated safe set
SD, along with a desired trajectory xd(t) in the task space
x = y(q). The D controller (19) with Kvel � 0 and the
following QP:

q̇∗d = argmin
q̇d∈Rn

‖q̇d −

q̇des(q,t)︷ ︸︸ ︷
J†y (ẋd − λ(y − xd)) ‖2

s.t. αeJhq̇ + q̇TBKvelq̇ − q̇TBKvelq̇d +GT q̇︸ ︷︷ ︸
ḣD(q,q̇,q̇d)

≥ −α(hD),

(20)

guarantees forward invariance, i.e., safety, of SD. Moreover,
it has a closed form solution:

q̇∗d = q̇des +

{
KT

velB
T q̇

‖KT
velB

T q̇‖2 Ψ(q, q̇, t; qdes) if Ψ(q, q̇, t; qdes) < 0

0 if Ψ(q, q̇, t; qdes) ≥ 0

(21)

where

Ψ(q, q̇, t; q̇des) := q̇T (αeJ
T
h +BKvelq̇ −BKvelq̇des +G) + α(hD).

Proof of Theorem 3 is omitted as it is a straightforward
extension of Theorem 2. It may be the case, as with industrial
actuators, that Kvel is not known. In that case, it can
typically be determined from experimental data. Formally,

one can guarantee safety by utilizing adaptive control barrier
functions [20]. Similar to Remark 1, we can reformulate the
constraints to eliminate the D and G matrices to yield robust
QPs.

Example 2 (Energy-based kinematic CBF). The 6 DOF
manipulator from Example 1 is now filtered with the con-
straint given in (17), using cu = 5λmax(D). Figure 3 shows
the result for different values of αe. Safety is guaranteed
regardless of the value of αe, but as the value increases, the
manipulator is able to move faster and get closer to obstacles,
resulting in better performance.

V. UNDERACTUATED SYSTEMS

The methods developed can also be applied to underac-
tuated systems, i.e., where m ≤ k and we have a poten-
tially non-singular actuation matrix B. The key idea is to
treat h(q) as one of the coordinates. Choose a mapping
Φ(q) := (w(q), h(q)), where w is chosen such that Φ is a
diffeomorphism. This can be easily obtained for non-singular
configurations. We obtain the derivative as[

ẇ(q, q̇)

ḣ(q, q̇)

]
= Je(q)q̇, (22)

where Je(q) is the Jacobian matrix. Je is non-singular by
property of diffeomorphism. We re-write the equations of
motion of the robot as

De(q)

[
ẅ

ḧ

]
+ Ce(q, q̇)

[
ẇ

ḣ

]
+Ge(q) = Je(q)

−TBu, (23)

where

De(q)=Je(q)
−TD(q)Je(q)

−1

Ce(q,q̇)=Je(q)
−TC(q)Je(q)

−1+Je(q)
−TD(q)J̇e(q)

−1

Ge(q)=Je(q)
−TG(q), (24)

are the new terms that define the dynamics in the transformed
space. It can be verified that the properties of De, Ce will be
same as that of D,C, i.e., De is symmetric positive definite,
and Ḋe − 2Ce is skew-symmetric. More details are in [19,
Chapter 4, Section 5.4]. We can separate (23) into two parts:

D11(q)ẅ +D12(q)ḧ+ C1(q, q̇)q̇ +G1(q) = B1(q)u



D21(q)ẅ +D22(q)ḧ+ C2(q, q̇)q̇ +G2(q) = B2(q)u, (25)

where the terms corresponding to D,C,G,B are apparent
from the setup. ẅ can be eliminated from (25) to obtain

(D22 −D21D
−1
11 D12)︸ ︷︷ ︸

Dh

ḧ+ (C2 −D21D
−1
11 C1)︸ ︷︷ ︸

Ch

q̇ +G2 −D21D
−1
11 G1︸ ︷︷ ︸

Gh

= (B2 −D21D
−1
11 B1)︸ ︷︷ ︸

Bh

u,

(26)

where Dh is nothing but the Schur complement form, and it
is known to be symmetric positive definite [21, Proposition
1]. Note that here Bh : Q → R1×m is the mapping from
u to the joints, which is assumed to have full row rank (in
other words, h is assumed to be inertially coupled with u.
This may not be satisfied for all Q, in which case a subset
Qu ⊂ Q is chosen (for example, in the cart-pole, pole-angle
is not inertially coupled with u when it is horizontal). With
this formulation, we have the following theorem.

Theorem 4. Consider a robotic system (10) and a kinematic
safety constraint: h : Q → R. Consider the dynamically
consistent extended CBF for underactuated systems:

ĥD(q, q̇) := −1

2
ḣ(q, q̇)TDh(q)ḣ(q, q̇) + αeh(q) (27)

with the safe set: ŜD := {(q, q̇) ∈ Q × Rk : ĥD(q, q̇) ≥
0}. Then ŜD ⊂ S and for all (q, q̇) ∈ ŜD the following
controller:
u∗(q, q̇, t) = argmin

u∈Rm

‖u− udes(q, q̇, t)‖2

s.t. − 1

2
ḣḊhḣ− ḣ(−Chq̇ −Gh) + αeḣ− ḣBhu ≥ −α(ĥD(q, q̇))

(28)

guarantees forward invariance of ŜD, i.e., safety of ŜD.

Proof. Differentiating ĥ yields:
˙̂
hD = −1

2
ḣḊhḣ− ḣ(−Chq̇ −Gh) + αeḣ− ḣBhu. (29)

It can be verified that if ḣ = 0, then the inequality in (28)
is satisfied. The safety property follows directly.

Remark 1. Similar to Corollary 1, we can eliminate some of
the model-based terms in (28). Specifically, we can replace
the constraint in the QP with the following:

−1

2
clḣ

2 − cu|ḣ|(|q̇|2 + 1) + αeḣ− ḣBhu ≥ −α(−cuḣ2 + αeh(x)),

where cl, cu are constants that bound the norms: cl ≤
‖Dh‖ ≤ cu, ‖Ch‖ ≤ cu|q̇|, ‖Gh‖ ≤ cu. We have used
the same notations for convenience. Note that these bounds
may not exist for all (q, q̇) ∈ Q×Rk, and they are dependent
on the validity of the coordinate transformation Φ. This is
usually avoided by choosing a smaller configuration set Qu.
More details on the bounds are in [21].

Example 3 (Cart-Pole System). To demonstrate these con-
cepts, we consider the cart-pole system with two states, the
cart position x and the pole angle θ. The system is actuated
through a force input u applied to the cart, which moves
freely in a line. The safety constraint is to ensure that pole
remains mostly upright, with θ ∈ [ 5π6 ,

7π
6 ].

Fig. 4. Cart-pole system with energy-based CBF.
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