
Vision Based C3BF in UGV Unicycle Model

Sahil Bobade1, Anand Sortur1, Sudharsan Vishwanathan1, Rushikesh Jadhav1, Shishir Kolathaya1

Abstract— This project presents an integration of an object
detection algorithm (YOLO V5 / Mask RCNN) with the
Collision cone control barrier function (C3BF), to avoid a
static obstacle in an environment using Turtlebot3 unicycle
model. This integration is facilitated using ROS framework
which interacts between the object detection module and the
robot’s navigation controls. Additionally, the project uses the
motion capture system to provide precise positional data of the
Turtlebot. The estimation of the depth and size of an obstacle
combined with the positional information of bot from the
Mocap system enables the C3BF to compute a safe trajectory
around an obstacle.

I. INTRODUCTION

In recent years, the rapid advancement in autonomous
robotics has expanded the application of robots across diverse
environments. As robots increasingly become part of our
everyday environments, they are frequently confronted with
static obstacles such as furniture, walls, and other fixed struc-
tures. These obstacles demands sophisticated detection and
avoidance techniques to ensure safe operation. Also, close
interaction with humans demands high reliability in safety-
critical tasks. Thus, designing a system which perceives
an obstacle in real time and which gives a formal safety
guarantees has become an essential aspect of safety-critical
applications and an active research area in recent years. For
reliable safety measures, such as effective collision avoid-
ance, a control algorithm focused on safety is necessary. This
algorithm must be integrated with the trajectory planning
system, with a primary emphasis on safety rather than strict
adherence to the planned path.

Visual systems provides the bot an ability to perceive
the environment in a manner similar to humans. Cameras
capture rich, high-resolution data that not only aids in
navigation and obstacle avoidance but also in more complex
tasks such as object recognition, segmentation, and more.
This data richness enhances the ability to make informed
decisions based on visual cues. Also, vision-based systems
can be adapted and used in a wide range of environments,
from indoor settings to rugged outdoor landscapes. Image
processing algorithms and machine learning models can be
trained to optimize performance under various lighting and
weather conditions. A key benefit of employing C3BF-based
quadratic programming is its efficiency in real-time applica-
tions, allowing for the computation of optimal control inputs
at a high frequency. This method can serve as an effective
safety overlay on top of existing advanced controllers used
for path planning and obstacle avoidance.

1Cyber-Physical Systems, Indian Institute of Science (IISc), Bengaluru.

In our work, we combine the Visual system with the
collision cone control barrier function [1], [2]. In particular,
we detect the size and depth of a static obstacle with the
camera and also the robot’s pose using a motion capture
system. These serves as an input to the C3BF controller.
The C3BF-based QP method computes the inputs to ensure
that the direction of the relative velocity vector remains
outside the collision cone (defined as the unsafe set) contin-
uously. This technique has been successfully implemented
and demonstrated using an acceleration-controlled unicycle
model.

II. BACKGROUND

In this section, we provide the relevant background nec-
essary to formulate the problem of obstacle avoidance for
the vehicle that is Unicycle Model . After which, we for-
mally introduce Control Barrier Functions (CBFs) and their
importance for real-time safety-critical control.

A. Unicycle Model

The acceleration controlled unicycle model has state
variables xp, yp, θ, v, ω denoting the pose, linear velocity,
and angular velocity, respectively. The control inputs are
linear acceleration (a) and angular acceleration (α). In Fig.
1 shows unicycle model. The resulting dynamics of this
model is shown below:

Fig. 1: Obstacle avoidance using visual input




ẋp

ẏp
θ̇
v̇
ω̇

 =


v cos θ
v sin θ
ω
0
0

+


0 0
0 0
0 0
1 0
0 1


[

a
α

]
(1)

In literature we typically see the model involves the
linear and angular velocities v, ω as inputs however here
we use accelerations as inputs. This is due to the fact that
differential drive robots have torques as inputs to the wheels
that directly affect acceleration. In other words, we can treat
the force/acceleration applied from the wheels as inputs. As
a result, v, ω become state variables in our model.

B. Control barrier functions

Having described the unicycle model, we now formally
introduce Control Barrier Functions (CBFs) and their appli-
cations in the context of safety. Consider a nonlinear control
system in affine form:

ẋ = f(x) + g(x)u (2)

where x ∈ D ⊆ Rn is the state of system, and u ∈ U ⊆
Rm the input for the system. Assume that the functions
f : Rn → Rn and g : Rn → Rn×m are continuously
differentiable. Given a Lipschitz continuous control law
u = k(x), the resulting closed loop system ẋ = fcl(x) =
f(x)+g(x)k(x) yields a solution x(t), with initial condition
x(0) = x0. Consider a set C defined as the super-level set
of a continuously differentiable function h : D ⊆ Rn → R
yielding,

C = {x ∈ D ⊂ Rn : h(x) ≥ 0} (3)
∂C = {x ∈ D ⊂ Rn : h(x) = 0} (4)

Int(C) = {x ∈ D ⊂ Rn : h(x) > 0} (5)

It is assumed that Int(C) is non-empty and C has no
isolated points, i.e. Int(C) ̸= ϕ and Int(C) = C. The system
is safe w.r.t. the control law u = k(x) if ∀x(0) ∈ C =⇒
x(t) ∈ C ∀t ≥ 0. We can mathematically verify if the
controller k(x) is safeguarding or not by using Control
Barrier Functions (CBFs), which is defined next.

Definition 1 (Control barrier function (CBF)): Given the
set C defined by (6)-(8), with ∂h

∂x (x) ̸= 0∀x ∈ ∂C, the
function h is called the control barrier function (CBF)
defined on the set D, if there exists an extended class K
function κ such that for all x ∈ D :

sup︸︷︷︸
u∈U

[Lfh(x) + Lgh(x)u︸ ︷︷ ︸
ḣ(x,u)

+κ(h(x))] ≥ 0 (6)

where Lfh(x) =
∂h
∂xf(x) and Lgh(x) =

∂h
∂xg(x) are the

Lie derivatives.
Given this definition of a CBF, we know that any Lipschitz

continuous control law k(x) satisfying the inequality: ḣ +
κ(h) ≥ 0 ensures safety of C if x(0) ∈ C, and asymptotic
convergence to C if x(0) is outside of C.

C. Controller synthesis for real-time safety

Having described the CBF and its associated formal
results, we now discuss its Quadratic Programming (QP)
formulation. CBFs are typically regarded as safety filters
which take the desired input (reference controller input)
uref (x, t) and modify this input in a minimal way:

u∗(x, t) = min
u∈U⊆Rm

∥u− uref (x, t)∥2 (7)

s.t. Lfh(x) + Lgh(x)u+ κ(h(x)) ≥ 0

This is called the Control Barrier Function based Quadratic
Program (CBF-QP).

D. Classical CBFs

Having introduced CBFs, we now explore collision avoid-
ance in unmanned ground vehicles (UGVs). The typical
ellipse-CBF Candidate - Unicycle: Consider the following
CBF candidate:

h(x, t) =

(
cx(t)− xp

c1

)2

+

(
cy(t)− yp

c2

)2

− 1 (8)

which approximates an obstacle with an ellipse with
center (cx(t), cy(t)) and axis lengths c1, c2. We assume
that cx(t), cy(t) are differentiable and their derivatives are
piecewise constants. The derivative of (8) is

2 (cx − x) (ċx − v cos θ)

c21
+

2 (cy − y) (ċy − v sin θ)

c22
(9)

which has no dependency on the inputs a, α. Hence, h
will not be a valid CBF for the acceleration-based model
(1). However, for static obstacles, if we choose to use the
velocity model (with v, ω as inputs instead of a, α ), then
h will certainly be a valid CBF, but the vehicle will have
limited control capability i.e., it loses steering ω.

E. Collision Cone CBF (C3BF)

Having described the shortcomings of existing approaches
for collision avoidance, we will now describe the the colli-
sion cone CBFs (C3BFs) [3], [4]. A collision cone, defined
for a pair of objects, is a set that can be used to predict
the possibility of collision between the two objects based on
the direction of their relative velocity. The collision cone of
an object pair represents the directions, which if traversed by
either object, will result in a collision between the two. For a
collision to happen, the relative velocity of the obstacle must
be pointing towards the vehicle. Hence, the relative velocity
vector must not be pointing into the pink shaded region EHI
in Fig. 2, which is a cone. This novel approach of avoiding
the pink cone region gives rise to Collision Cone Control
Barrier Functions (C3BFs).



Fig. 2: Construction of collision cone for an elliptical obsta-
cle considering the ego vehicle’s dimensions (width: w )

III. APPLICATION TO UNICYCLE

Acceleration controlled unicycle model: We first obtain
the relative position vector between the body center of the
unicycle and the center of the obstacle. Therefore, we have

prel :=

[
cx − (xp + l cos(θ))
cy − (yp + l sin(θ))

]
(10)

Here l is the distance of the body center from the differ-
ential drive axis (see Fig. 1). We obtain its velocity as

vrel :=

[
ċx − (v cos(θ)− l sin(θ) ∗ ω)
ċy − (v sin(θ) + l cos(θ) ∗ ω)

]
(11)

We propose the following CBF candidate:

h(x, t) =< prel , vrel > + ∥prel ∥ ∥vrel ∥ cosϕ (12)

where, ϕ is the half angle of the cone, the expression of

cosϕ is given by
√

∥prel ∥2−r2

∥prel ∥ (see Fig. 2). The constraint
simply ensures that the angle between prel , vrel is less than
180◦ − ϕ. We have the following first result of the paper:
Theorem 1: Given the acceleration controlled unicycle model
(1), the proposed CBF candidate (12) with prel, vrel defined
by (10), (11) is a valid CBF defined for the set D.

Proof: Taking the derivative of (12) yields (vrel ̸= 0)

ḣ = < ṗrel , vrel > + < prel , v̇rel >

+ < vrel , v̇rel >

√
∥prel ∥2 − r2

∥vrel ∥

+ < prel , ṗrel >
∥vrel ∥√

∥prel ∥2 − r2
(13)

Further ṗrel = vrel and

v̇rel =

[
−a cos θ + v(sin θ)ω + l(cos θ)ω2 + l(sin θ)α
−a sin θ − v(cos θ)ω + l(sin θ)ω2 − l(cos θ)α

]
Given v̇rel and ḣ, we have the following expression for

Lgh :

Lgh =

 < prel + vrel

√
∥prel ∥2−r2

∥vrel ∥ ,

[
− cos θ
− sin θ

]
>

< prel + vrel

√
∥prel ∥2−r2

∥vrel ∥ ,

[
l sin θ
−l cos θ

]
>


T

It can be verified that for Lgh cannot be zero as proved
in this paper [1],

A. Methodology

The Intel RealSense D435i camera was mounted on
the TurtleBot (fig 4). It offers high-resolution depth
sensing by combining stereo vision with infrared depth
sensing. The depth frame rate is 90 fps and the RGB frame
rate is 30 fps. The RGB field of view (H × V) is 69◦ × 42◦

Fig. 3: Flow of operation

Fig. 4: Turtlebot with camera and MoCap sensor

Using the depth stream from the RealSense camera, the
depth at the centroid of the detected object’s bounding box is
extracted. This depth information, coupled with the camera’s
field of view and the object’s pixel dimensions, is used to



calculate the real-world size and also the coordinates of an
object.

The object is detected using the two methods:
1. Mask RCNN
2. YOLO V5

B. Mask RCNN

Mask R-CNN is a deep learning model for object detection
and instance segmentation. It extends Faster R-CNN by
adding a branch for predicting segmentation masks on each
Region of Interest (RoI), independent of the class box.
It identifies objects and their contours within an image,
providing pixel-level precision which is crucial for size
measurement. This is particularly valuable for detailed en-
vironment mapping and interaction, allowing for precise
obstacle avoidance strategies. The number of parameters for
this model are 43.5 million.

Fig. 5: Mask RCNN Object size detection

The architecture of Mask R-CNN is as follows:
Region Proposal Network (RPN): In the first stage, the

model generates a set of region proposals that are likely
to contain objects. These proposals are potential bounding
boxes around objects in the image. The region proposal net-
work is responsible for suggesting these candidate regions.

Region of Interest (RoI) Pooling: Once the region propos-
als are generated, each region is cropped from the image and
resized to a fixed size. This process is known as RoI pooling,
and it ensures that the region of interest is consistently
represented in a fixed-size feature map, regardless of the size
or aspect ratio of the original region proposal.

Feature Extraction: The cropped and resized regions are
then passed through a pre-trained convolutional neural net-
work (CNN) to extract features from each region.

Object Classification and Bounding Box Regression: The
features extracted from each region are used for two tasks:
object classification and bounding box regression. Object
classification involves determining the class of the object

within the region, and bounding box regression refines the
coordinates of the bounding box around the object.

Fig. 6: Mask RCNN architecture

C. YOLO V5

YOLOv5 is a state-of-the-art deep learning model de-
signed for real-time object detection tasks, making it well-
suited for the project’s objectives. YOLOv5 offers high ac-
curacy in object detection, providing TurtleBot with precise
information about the location and dimensions of static ob-
stacles. This accuracy is essential for calculating safe trajec-
tories and implementing effective obstacle avoidance strate-
gies. There are 5 versions of YOLOv5, namely YOLOv5x,
YOLOv5l, YOLOv5m, YOLOv5s, and YOLOv5n. We are
using YOLOV5s i.e small version.

YOLOv5’s architecture consists of three main parts:
Backbone: This is the main body of the network. For

YOLOv5, the backbone is designed using the New CSP-
Darknet53 structure, a modification of the Darknet architec-
ture.

Neck: This part connects the backbone and the head.
In YOLOv5, the SPPF and New CSP-PAN structures are
utilized.

Head: This part is responsible for generating the final
output. YOLOv5 uses the YOLOv3 Head for this purpose.

Its lightweight architecture ensures minimal computational
overhead, enabling real-time performance without sacrificing
accuracy.

In the Fig we can see that YOLO V5 is able to detect the
size and the depth of an obstacle.

D. Object Size calculation

The obstacle size calculation for an image of 640*480 is
carried out as follows.

width = 2 ·
(
depth · tan

(
fov x
2

))
· width px

640



Fig. 7: YOLO V5 architecture

Fig. 8: YOLO V5 object depth and size estimation

height = 2 ·
(
depth · tan

(
fov y
2

))
· height px

480

where fov x and fov y are the Horizontal field of view and
the Vertical field of view respectively.

fov x = 69.4
fov y = 42.5
width px and height px are the Width and Height in pixels

respectively.
Also, the offset of an obstacle from the center of a turtlebot

is calculated to check whether the obstacle is in the path of
the bot or not.

In this way, we get the size, depth, and co-ordinates of
an obstacle in robot frame. This information is published
in to ROS topic (/coordinates). Controller node subscribe to
this topic and compute global co-ordinates of an obstacle.
This information is used in the computation of the control
barrier function.The state information for turtlebot3 is being
published by the Mocap phase marker ROS topic.

IV. RESULTS AND DISCUSSIONS

In this section, we provide the results to validate the
Vision based C3BF. All the tests are done using TurtleBot3
(modeled as a unicycle) and using a Motion capture system.

A. Static obstacle avoidance using Camera

We have considered the reference control inputs as a
simple PD controller. Constant target velocities were chosen

Fig. 9: Offset calculation

to verify the C3BF-QP. For the class K function in the CBF
inequality, we chose κ(h) = γh, where γ = 1 and the
weight matrix for linear acceleration was considered as 10
times the weight of angular acceleration. This was done to
ensure that Turtlebot meets the constant target velocity of 0.5
m/s while avoiding the obstacle. The width of the obstacle
obtained from vision output was accounted while formulating
the C3BF. Fig. shows turlebot avoiding a static obstacle using
visual input.

Fig. 10: Obstacle avoidance using visual input

B. Static obstacle fed as prior information

The coordinates of the obstacle in the world frame are
pre-fed as input for the C3BF formulation. Here the width
of the obstacle was assumed to be uniform with a radius
of 50cm. Here the weight matrix for linear acceleration was
considered as 100 times the weight of angular acceleration.
This was done to ensure the Turtlebot meets the constant
demand velocity of 0.5 m/s while avoiding the obstacle. We
have considered the reference control inputs as a simple PD
controller. For the class K function in the CBF inequality, we
chose κ(h) = γh, where γ = 1. Fig. shows turlebot avoiding
an obstacle whose information is prefed in Mocap



Fig. 11: Obstacle avoidance by prefed Mocap

Fig. 12: Trajectoryof Obstacle avoidance by prefed Mocap
info

C. Dynamic obstacle avoidance using MoCap

In dynamic obstacle, omnibot was considered as a moving
obstacle. The position and the velocity of the obstacle
was computed using the phase space marker information
as published over ROS topic. The omnibot was moving
in trajectory lane which was intersecting with the Egobot
trajectory. It was controlled using PD law without using any
control barrier function. The linear and angular acceleration
of the Egobot was computed taking into account the state
information of the omnibot (obstacle). Blue is ego vehicle
and red is omnibot.

V. CONCLUSIONS

We demonstrated the use of vision in estimating the size
and the depth of a static obstacle. These size and depth
measurements will be input to the collision cone control bar-
rier function controller, thus allowing the turtlebot unicycle
model to safely navigate through an environment with a static
obstacle.

VI. ACKNOWLEDGEMENT

We would like to thank Karthik, Tejas, Shubham, Shishir
Sir and Pushpak Sir. Special Thanks to Manan for helping

Fig. 13: .Dynamic obstacle avoidance using MoCap info

throughout the project.

VII. FUTURE SCOPE

Avoiding dynamic obstacles using vision is the obvious
next step of this project. It will require us to estimate the
state of a dynamic obstacle in real time. Also, Integration of
multiple sensors, such as cameras and Lidar through fusion
techniques can significantly improve detection accuracy and
robustness. Thus, we aim to enhance the autonomy and safety
of autonomous vehicles by enabling them to avoid static as
well as dynamic obstacle in diverse environments.

Moreover, we would like to extend it to aerial vehicles
[3], legged robots [5], [6] in cluttered environments [7].

REFERENCES

[1] M. Tayal, B. G. Goswami, K. Rajgopal, R. Singh, T. Rao, J. Keshavan,
P. Jagtap, and S. Kolathaya, “A collision cone approach for control
barrier functions,” arXiv preprint arXiv:2403.07043, 2024.

[2] B. G. Goswami, M. Tayal, K. Rajgopal, P. Jagtap, and S. Ko-
lathaya, “Collision cone control barrier functions: Experimental val-
idation on ugvs for kinematic obstacle avoidance,” arXiv preprint
arXiv:2310.10839, 2023.

[3] M. Tayal and S. Kolathaya, “Control barrier functions in dynamic uavs
for kinematic obstacle avoidance: a collision cone approach,” arXiv
preprint arXiv:2303.15871, 2023.

[4] P. Thontepu, B. G. Goswami, M. Tayal, N. Singh, S. S. P I, S. S. M G,
S. Sundaram, V. Katewa, and S. Kolathaya, “Collision cone control
barrier functions for kinematic obstacle avoidance in ugvs,” in 2023
Ninth Indian Control Conference (ICC), 2023, pp. 293–298.

[5] M. Tayal and S. Kolathaya, “Safe legged locomotion using
collision cone control barrier functions (c3bfs),” arXiv preprint
arXiv:2309.01898, 2023.

[6] G. Mothish, K. Rajgopal, R. Kola, M. Tayal, and S. Kolathaya, “Stoch
biro: Design and control of a low cost bipedal robot,” arXiv preprint
arXiv:2312.06512, 2023.

[7] M. Tayal and S. Kolathaya, “Polygonal cone control barrier functions
(polyc2bf) for safe navigation in cluttered environments,” arXiv preprint
arXiv:2311.08787, 2023.


	INTRODUCTION
	BACKGROUND
	Unicycle Model
	Control barrier functions
	Controller synthesis for real-time safety
	Classical CBFs 
	Collision Cone CBF (C3BF)

	Application to unicycle
	Methodology
	Mask RCNN
	YOLO V5
	Object Size calculation

	Results and Discussions
	Static obstacle avoidance using Camera
	Static obstacle fed as prior information
	Dynamic obstacle avoidance using MoCap 

	Conclusions
	Acknowledgement
	Future Scope
	References

