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Abstract— This paper shows the stabilizing effect of the upper
body (especially the arms) on improving the stability of Bipedal
robots. We demonstrate the efficacy on MuJoCo simulations of
a Bipedal Robot Digit.

Index Terms— Bipedal Walking, Hopping, Reinforcement
Learning

I. INTRODUCTION

Most of the research in the field of controls of Legged
locomotion focuses more on the control of lower body while
walking, hopping or running, which leaves the torso unstable.
Swinging arms in an opposing direction with respect to the
lower limb reduces the angular momentum of the body,
balancing the rotational motion produced during walking and
thereby reducing the disturbance in the torso. Moreover it
also helps in reducing the energy spent during locomotion
[1].

II. ROBOT MODEL

In this section, we describe the robot model on which
the proposed framework is tested. We also introduce the
mathematical notations used throughout the paper.

A. Robot model and Notations

Digit is a 30 degrees of freedom (DoF) 3D biped de-
veloped by Agility Robotics, USA. The total weight of
the robot is 48 kg, from which 22 kg corresponds to the
upper body, and 13 kg to each leg. Each arm has 4 DoF
corresponding to the shoulder roll, pitch and yaw joints
(qsr, qsp, qsy) and the elbow joint (qe). Each leg consists of
eight joints, including three actuated hip joints (hip roll, yaw,
and pitch (qhr, qhp, qhy)), one actuated knee joint (qk), two
actuated ankle joints (toe pitch and roll (qtp, qtr)), and three
passive joints corresponding to shin-spring (qss), tarsus (qt),
and heel-spring joints (qhs). To differentiate between left and
right leg joints, we add the superscript L and R respectively
to each of the joints. The position and orientation of the
robot’s base is denoted by:

qb = [px, py, pz, ψ, θ, ϕ]
T , (1)

where px, py, pz correspond to the base translation and
ψ, θ, ϕ correspond to the base orientation (roll, pitch and yaw
angles) respectively. Therefore, the generalized coordinates
of the robot are completely defined by:

q = (qb,qj), (2)

This work is supported by PMRF
1Cyber-Physical Systems, Indian Institute of Science (IISc), Bengaluru.

{manantayal, shishirk}@iisc.ac.in .

where qj is defined by the robot joint angles:
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In this paper, we denote vx, vy, vz as the torso velocity,
ψ̇, θ̇, ϕ̇ as the torso angular velocity about the roll, pitch and
yaw axes, and the error as e□ = □d − □, where □d is the
desired value for that state.

1) Forward Kinematics: Given the generalized coordi-
nates of the robot q, forward kinematics (FK) can be used to
compute the homogeneous transformation matrix T ∈ R4×4

of the robot’s end-effector and center of mass (CoM). Several
open-source packages can solve the FK by using the URDF
model of the robot. We created a URDF of Digit from the
XML model provided by the Agility Robotics, and used
FROST [2] to obtain the symbolic expressions for T.

For any homogeneous transformation:

Tac =

[
Rac pac
01×3 1

]
, (3)

where a and c denote any two frames of interest, Rac ∈ R3×3

represent the rotation matrix, and pac ∈ R3×1 represents the
relative position of the origin of frame c with respect to the
origin of frame a. The orientation of the robot’s feet with
respect to the world is given through:

R
L/R
wf = R

L/R
wb R

L/R
bf , (4)

where w corresponds to the world fixed frame, f and b
correspond to the robot’s feet and base body frames, and
L/R determines left or right side.

By using the FK described above, we can use the orienta-
tion of the stance foot to estimate the support plane roll (γ)
and pitch (α) angles of the walking terrain by converting the
rotation matrix R

L/R
wf to Euler angles.

2) Inverse Kinematics: We only consider the foot position
with respect to the robot base to solve the IK problem.
In addition, given the particular closed-chains structure of
Digit’s leg, we keep the yaw hip angle constant and use
simple trigonometric computations to transform the foot
Cartesian position into virtual leg length, pitch angle, and roll
angle. The virtual leg is the imaginary line that connects the
hip of the robot with the leg ankle. In this decoupled system,
the virtual leg length and pitch angle are determined by the
position of the hip pitch and knee joint. With these values,
we then solve the ”reduced” IK subject to the constraints
imposed by the leg kinematic structure. Finally, by solving
the IK problem for a sufficiently diverse set of desired foot
positions, we obtain a closed form solution using nonlinear
regression.



3) Contact detection: To switch between the left and
right stance during the walking gait, we use the contact
information of the feet with the ground. To detect the contact
event, we estimate the ground reaction force of the stance
foot by using the spring deflection and the contact Jacobian
of the stance foot, as shown in [3].

III. METHOD

In this section, we describe our control framework and ex-
plain the working of the high-level linear policy in adherence
with the low-level phase controller.

A. Using Arm Swing while Walking

In this section, we describe the control framework, and
explain how the end-foot trajectories are modulated and
tracked in real-time.

B. Overview of the Control Framework

We use a hierarchical structure with a high-level foot
trajectory modulator and a low-level gait controller. The foot
trajectory modulator comprises a linear policy that modulates
a parameterized semi-elliptical foot trajectory. The trajectory
thus generated is then fed into the gait controller, which uses
a regulation based on the contact state of each of the legs.
We chose to append an ankle regulation with the required
joint targets obtained from the foot trajectory through inverse
kinematics for the swing leg. If a leg is in the stance phase,
we keep the ankle passive and activate the torso regulation
to maintain the upper body attitude. Effectively, the policy
is free to control the swing leg, whereas the stance leg is
only used to stabilize the robot base. Since the stance ankle
is passive and aligns the foot parallel to the support plane,
we can accurately estimate the ground elevation using the
forward kinematics. Ignoring the short-lived double support
phase in every walking cycle, we only consider the single
support phases and estimate the terrain for every walking
step as discussed in section II-A.1. This estimate and the
robot’s torso states are used by the policy to modulate the
properties of the swing leg trajectory.

C. Foot Trajectory Modulator

To modulate the foot trajectory, we propose to train a
policy that uses only the relevant feedback deduced through
physical insights from walking motion. For the given state
space S ⊂ Rn of dimension n, and action space A ⊂ Rm

of dimension m, we define our policy to be π : S →
A as π(s) := Ms, where M ∈ Rm×n is a matrix of
learnable parameters. Our formulation drastically decreased
the required control complexity, and hence a linear policy
was sufficient to learn such a transformation. The observation
and the action space choices are explained as follows.

Observation Space: In our prior work [4], we demon-
strated the effectiveness of choosing a reduced observation
space from all available robot states. However, to improve
the terrain complexity that the policy could handle and
develop command-controlled policies, we augmented the
torso velocity error and the desired heading velocity to the

observation space in [4], including the torso orientation, torso
angular velocity, and support plane elevation. For heading
direction control, we choose to send the error in heading yaw
in the place of the current torso yaw. Thus, the observation
space is a 12 dimensional state vector defined as st =
{ψ, θ, eϕ, ψ̇, θ̇, ϕ̇, γ, α, evx , evy , evz , vdx},

Action Space: The semi-elliptical foot trajectory, is pa-
rameterized by the major axis (Step Length, ℓ), the orien-
tation of the ellipse along the Z-axis of the hip frame
(hip yaw, φ) and translational shifts along X, Y and Z
directions, x́, ý, ź (together shown as Ó). Here, step length
and hip yaw describe the walking motion, whereas the shifts
are heavily utilized to balance the robot actively. The semi-
ellipse is then generated in the hip frame of reference as
shown in [4]. To preserve the symmetry of the trajectories,
we remove all the asymmetric conventions between the legs,
outside the policy and apply a mirrored transformation ac-
cording to the leg. This enables us to learn to predict a single
set of parameters irrespective of the leg. Thus, the action
space is a 5-dimensional vector such that, at={ℓ, φ, x́, ý, ź}.

D. Gait Controller

The gait controller is responsible for keeping track of the
gait parameters and tracking the generated foot trajectory.
Based on the contact state of the leg (estimated as explained
in Section II-A.3), the gait controller augments the ankle
regulation followed by joint level PD tracking for the swing
leg and just the torso regulation for the stance leg, as in [5].
A phase-variable τ, τ ∈ [0, 1) which is used to track the
semi-elliptical trajectory gets reset once every walking step
or upon a premature foot contact. Hence for an ideal walking
cycle, the phase variable iterates from 0 to 1 twice.

Ankle Regulation: Since the generated foot trajectory
does not include the two DoF at the ankle (actuated joints),
we require an explicit regulation to control the foot orienta-
tion. For bipeds, control of the foot is crucial as the swing
leg’s angle of attack directly affects the torso orientation. The
swing foot is kept parallel to the underlying terrain elevation
to ensure proper landing on the ground. The desired position
of the swing foot is determined from the kinematics of the
robot’s leg [5] as follows:

qdtr = qhr + Sf (0.366 + ψ + γ) (5)

qdtp = qhp + Sf (0.065− θ − α), (6)

where qdtr and qdtp are the target angles for the ankle roll and
pitch joints. The value of Sf is defined as follows,

Sf =

{
−1 left leg in swing phase
+1 right leg in swing phase

Torso Regulation: The torso regulation is applied to
ensure an upright torso, which is desired for a stable walking
gait and, more importantly, to prevent the stance leg from
sliding. The robot is assumed to have a rigid-body torso,
and hence simple PD controllers defined below can be used



Fig. 1: Control framework (Walking)

for the the attitude control.

uhr = Phr(ψd − ψ) +Dhr(ψ̇d − ψ̇) (7)

uhp = −Sf (Php(θd − θ) +Dhp(θ̇d − θ̇)), (8)

where uhr, uhp are the torques applied the the hip roll
and pitch of the stance leg and Phr, Dhr, Php, Dhp are
hand tuned gains. The desired targets for the torso attitude
(ψd, θd, ψ̇d, θ̇d) are all set to zero for normal walking.

E. Development of Heuristics

Being simple and interpretable, the linear policy allows us
to manipulate the matrix elements based on physical insights.
In [4] we developed a set of heuristic linear equations as a
sub-optimal policy, hand-tuned the gains and deployed it as
the initial policy for the training. This technique resulted in
the policy converging to practical walking motions across
different slopes. However, a lack of structure in the policy
leads to the training algorithm making undesirable relations
between the state and action variables. For example, the
feedback of torso pitch (θ) or yaw (ϕ) is unnecessary for y-
shift (ý), as it cannot control those DoF. The effect of these
non-sparse terms in the matrix was insignificant in simulation
but got amplified in our hardware trials, leading to the
policy’s failure. We hypothesize that the policy overfitting to
the simulation dynamics through these non-zero stray terms
affects the hardware performance due to the domain shift. To
resolve this issue, we enforce a structure to the sparse matrix
and only learn for the relevant terms. In this work, we intend
to train separate policies for walking i) on arbitrary slopes, ii)
on stairs, and iii) asper commands. Hence, we select certain
terms common across all these matrices to ensure dynamic
balance and several unique terms for each of them based on
their task requirements.

Stabilization Heuristics: Irrespective of the task at hand,
we require any policy to keep balance and walk forward.
To this end, we define the following heuristic relations to
stabilize the robot in each of the following planes.

In the sagittal plane,
• ℓ is to be used for correcting the disturbance in θ,
• x́ is to be used for correcting the error in vx, i.e. evx ,
• ź is to be used for minimizing the torso oscillation along

the z-direction, i.e. evz
In the transverse plane,
• ý is to be used for correcting the disturbance in ψ and

the error in vy , i.e. evy

In the coronal plane,
• φ is to be used for correcting the error in heading

direction, i.e. eϕ
Task-Specific Heuristics: Apart from the stabilization

heuristics, we add additional terms to the policy matrix based
on the nature of the task for each of the following cases,

Arbitrary Slope Policies: In this case, there should be a
dependency of the actions x́ and ź with the support plane
estimates (γ, α), to alter the foot placements in the sagittal
plane based on the underlying terrain. Deducing a feasible
target velocity for an arbitrary terrain is not straightforward,
and we are also not keen on velocity tracking compared
to stable walking on this challenging terrain. Hence, we
relate the action ℓ with the state evx , expecting the policy
to converge to nominal walking step size in accordance with
the objective (refer Section III-F).

Command Controlled Policies: To learn a command con-
trolled policy, we keep the same setup as for arbitrary
slopes except for the step length (ℓ) to be related with the
commanded heading velocity (vdx) directly.

Stair Policies: The primary strategy to walk on stairs
blindly are i) have a high swing height and ii) increase
the z-shift upon accidental stubbing with a step. For the
first strategy, we explicitly choose a higher foot clearance.
To incorporate the second strategy, we enable the term
connecting the state evx with the action ź. The intuition here
is that when a foot collides with a step, a sudden change
in the vx can be observed, and the feedback from evx can
result in an increase in the ź.

F. Policy Training

In this section, we discuss the training procedure used
for learning the linear policy. We start from a hand-tuned
intial policy to provide a warm start for the training. We use
Augmented Random Search (ARS) [6], owing to the minimal
number of hyper-parameters to tune, ease of use, and its
effectiveness towards solving continuous-control problems.
A point worth noting is that, instead of using the generic ARS
setup, where the search space is in Rm×n, having enforced
a heuristic structure to the policy matrix, we only search a
sub-space of this parameter space.

G. Reward Function:

Due to the ambiguity in finding a feasible target velocity
for a given terrain type, we propose two different reward



functions for training the i) Terrain Policies and ii) Command
Controlled Policies. For terrain policies (slope and stair
policies), we use a reward function defined as,

r = Gw1(ψ) +Gw2(θ) +Gw3(eϕ) +Gw4(epz ) +W∆x

(9)

where, epz
is the error in the robot’s height, and ∆x is the

distance travelled along the heading direction in that time-
step, weighted by W . The mapping G : R → [0, 1] is the
Gaussian kernel given by Gwj

(x) = exp (−wj ∗ x2), wj >
0. The objective here is to walk as far as possible while
ensuring the stability of the torso. For training the command
controlled policies, we remove the ∆x term and substitute
it with a velocity tracking term as shown in (10). This is
because, we require the policy to learn to react to changes
in the velocity commands.

r = Gw1
(ψ) +Gw2

(θ) +Gw3
(eϕ) +Gw4

(epz
) +Gw5

(ev)
(10)

where ev is the error in the heading velocity of the robot.

H. Training Setup

For terrain policies, we train on the variants of a given
parameterized terrain type. A specific combination of terrain
parameters is randomly chosen from a discrete set of that
terrain’s configurations at the beginning of an episode. The
target heading velocity is kept to be a small positive value
to prevent the policy from learning to walk in place (as
evx ̸= 0). For the command-controlled policies, we only train
on flat-ground and update the target velocity and desired yaw
every three seconds. An episode is terminated when the robot
topples, or if the robot’s height decreases below a certain
threshold or if the maximum episode length is reached.The
ARS hyperparameters used for training are learning rate
(β) = 0.03, noise (ν) = 0.04 and episode length = 15k
simulation steps.

Swinging the arms helps in reducing the angular momen-
tum of the body and reduces the disturbance in the torso. So
to show that we will compare two cases: Digit robot walking
with arm swing and without arm swing using Linear Policy
as mentioned in [7]. For that we add 2 more rows in the
policy for the radius of swing (r) and maximum swing angle
(γ). The final control framework is shown in Fig. 1.

I. Using Arm Swing while Hopping

In [7], we developed a policy that enabled robust walking
by modulating an elliptical trajectory for the feet using a
linear policy. This approach limits the realisation of more
athletic behaviours since elliptical trajectories are restrictive
in nature. In our experiments, extending [7] to hopping, we
found elliptical trajectories to be inadequate, causing the
policies to fail. Gaits like hopping require more complex
trajectories, which cannot be hand-picked. Therefore, we
propose to integrate the linear policy with a model that
plans the desired template motion online once every hopping
cycle. This embedded model provides a reference trajectory
to the linear policy for executing arbitrary motions, unlike

fixed foot trajectory modulators with fixed gaits [7], thereby
extending the framework. It is worth mentioning that the
framework is independent of the chosen model and can be
readily extended to diverse models as per the task and motion
requirements. For instance, in our case, we use a SLIP model
for hopping, whereas, for more complicated motions like
backflips and parkour, we believe the approach could be
extended to centroidal and full-order models.

The learnt linear policy generates unscaled motor com-
mands for the leg joints during the stance phase and desired
foot placement in the flight phase. The policy’s outputs are
then transformed to the appropriate scale or target joint
angles through inverse kinematics by the phase controller
in accordance with the given phase. These controllers are
further explained in detail as follows.

Now, in this case, we will compare two cases: Digit robot
hopping with arm swing and without arm swing using Linear
Policy as mentioned in [8]. In this case also we add 2 more
rows in the policy for the radius of swing (r) and maximum
swing angle (γ). The final control framework is shown in
Fig. 2

J. Using Arm Swing for Push Recovery while Standing

To analyse the utility of arm swing in case of push
recovery, we will compare the case of push recovery with
active, passive and fixed arm movements. We will use LQR
Controller to recover from external push on hip, knee and
ankle joints in all the cases. In case of Active arm Linear
MPC is used to control the arm movement, while keeping
the control values as zero in case of passive arm and fixed
control values (set by the initial control values) in case of
fixed arms.

IV. SIMULATIONS

A. Using Arm Swing while Walking

The inferences from the experiment comparing the cases
with and without arms (figs: 3 & 4) are as follows:

• Adding an Arm Swing in Stabilizing the Torso better
• It also helped in Tracking the velocity better
• It also helped in Walking at higher speeds
• Moreover, Swing the arms helped in reducing the CoT

(Cost of Transmission) by 24%

B. Using Arm Swing while Hoping

The inferences from the experiment comparing the cases
with and without arms (figs: 5, 6 & 7) are as follows:

• Adding an Arm Swing in Stabilizing the Torso better
• It also helped in Tracking the velocity better
• It also helped in Hopping at higher speeds
• However, the CoT (Cost of Transmission) in both the

cases are almost similar
• The height of hop increases with increase in velocity



Fig. 2: Figure showing the control framework (Hopping)

Fig. 3: Figure showing the RPY with (left) and w/o Arm
swing (right) while Walking)

Fig. 4: Figure showing the Velocity Tracking with (left) and
w/o Arm swing (right) while Walking

Fig. 5: Figure showing the RPY with (left) and w/o Arm
swing (right) while Hopping

Fig. 6: Figure showing the Velocity Tracking with (left) and
w/o Arm swing (right) while Hopping

Fig. 7: Figure showing the Foot Distance from ground with
(left) and w/o Arm swing (right) while Hopping

C. Using Arm Swing for Push Recovery while Standing

The inferences from the experiment comparing the cases
active, fixed and passive arms (figs: 8) are as follows:

• Active arm has the least CoM deviation to push.
• The Power consumption in case of active arms is 4.7%

less than fixed arms and 129% less than passive arm.
• In active arm case the oscillation of the torso after

external push is least.

Fig. 8: Figure showing the max deviation of torso vs external
perturbation(left)

V. CONCLUSIONS

In this paper, we successfully demonstrated stabilizing the
walking, hoping and push recovery in the bipedal robot Digit
in simulations.
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