
MELP: Model Embedded Linear Policies for Robust Bipedal Hopping

Raghav Soni, Guillermo A. Castillo, Lokesh Krishna, Ayonga Hereid, Shishir Kolathaya

Abstract— Linear policies are the simplest class of policies
that can achieve stable bipedal walking behaviors in both
simulation and hardware. However, a significant challenge in
deploying them widely is the difficulty in extending them to
more dynamic behaviors like hopping and running. Therefore,
in this work, we propose a new class of linear policies in which
template models can be embedded. In particular, we show how
to embed Spring Loaded Inverted Pendulum (SLIP) model in
the policy class and realize perpetual hopping in arbitrary
directions. The spring constant of the template model is learned
in addition to the remaining parameters of the policy. Given this
spring constant, the goal is to realize hopping trajectories using
the SLIP model, which are then tracked by the bipedal robot
using the linear policy. Continuous hopping with adjustable
heading direction was achieved across different terrains in
simulation with heading and lateral velocities of up to 0.5m/sec
and 0.05m/sec, respectively. The policy was then transferred to
the hardware, and preliminary results (> 10 steps) of hopping
were achieved.

Keywords: Humanoid and Bipedal Locomotion, Rein-
forcement Learning

I. INTRODUCTION

Recent advances in actuation, computation, and sensing
have made legged robots a viable technology for deploying
in environments engineered for humans. These results are
often conservative owing to the controlled settings of their
deployed environments. However, the fullest potential of
these platforms can be unleashed through their deployment as
first responders in uncontrolled environments which require
highly athletic and aggressive manoeuvres akin to their
human counterparts, which is currently limited by existing
control strategies. Established methods like Zero Moment
Point (ZMP) [18], Linear Inverted Pendulum models [5]
and Hybrid Zero Dynamics (HZD) [20] can provide robust
walking but fail to extend to the expected aperiodic transient
behaviours. Their success is also subject to rigorous tuning
and gain scheduling [9] for their real-world deployment.

Sophisticated techniques from optimal control, like trajec-
tory optimization (TO), model predictive control (MPC) and
whole body impulse control (WBIC), show great promise
in realizing dynamic behaviours like jumps and backflips
[6]. Despite MPC’s success, scaling it to acrobatic motions
with longer aerial phases is challenging as their success and

This work is supported in part by the Pratiksha Trust and the National
Science Foundation under grant FRR-21441568.

R. Soni and L. Krishna are with the department of Electronics Engineer-
ing, Indian Institute of Technology (BHU) Varanasi, India.

G. A. Castillo and A. Hereid are with the department of Mechanical and
Aerospace Engineering, Ohio State University, Columbus, OH, USA.

S. Kolathaya is with the department of Computer Science and Automation
and the Centre for Cyber-Physical Systems, Indian Institute of Science,
Bengaluru, India.

Sim-to-sim

Transfer

Sim-to-real

Transfer

MELP: Model Embedded

 Linear Policy

Hardware

AR Simulator

Fig. 1: Figure showing generalisation of policy across
different terrains and domains.

real-time deployment is conditional to the use of simplified
dynamics [6], [5] and shorter planning horizons. TO provides
a workaround to overcome this limitation by generating
libraries of trajectories utilizing the full order dynamics that
can then be tracked online [13] [12], [14] but take longer
to compute and restrict these techniques to be offline. The
stochasticity and non-stationarity of real-world conditions
demand the replanning or adaptation of these trajectories,
which at present can only be achieved through a highly-
engineered synergy between the offline full order TO and
online reduced order MPCs and WBIC’s [4], which requires
rigorous modeling and tuning.

On the other end of the spectrum, data-driven methods
have shown compelling results in synthesizing controllers
for legged robots [17], [2]. Their success can be attributed
to their exposure to full-order dynamics, allowing them to
learn unrestricted, efficient and novel behaviours, unlike their
model-based equivalents. Additionally, they provide a more
flexible framework to integrate and model the uncertainty
observed in real-world conditions, thereby enhancing their
sim-to-real transfer [16]. [10] recently showed that such
policies for controlling a highly non-linear system typically
parameterized as deep neural networks tend to linearize it
such that a low-dimensional linear system can represent
the entire high-dimensional closed-loop system, thus shining
light on a major drawback of deep reinforcement learning
based control, i.e. interpretability and safety. These findings
complement our prior works [8], [7] that learnt linear control
policies for robust blind bipedal walking in simulation and
showed direct transfer to hardware. Despite the policy’s
success in bipedal walking, the use of a hand-picked foot
trajectory limits extending the framework to more athletic

behaviours such as hopping. Selecting such task-specific
trajectories is infeasible and hence calls for the utility of
model-based planning. Thus, in this work, we propose to
extend our design philosophy of learning linear control
policies for realizing bipedal hopping through the integration
of a dynamical model. Bipedal hopping is an ideal candidate
for such a motion as it requires establishing an optimal
balance of handling the body momentum and precise foot
placements after significant flight phases. [15] demonstrates
agile hopping but at the cost of design simplifications of the
deployed hardware, and hence cannot be readily extended
to full-order humanoids. Hence, we propose alleviating such
design limitations by learning the controller in simulation.
Our contribution is twofold.

1) Providing a control framework for integrating reduced
order models in model-free learning and realizing robust
bipedal hopping.

2) A simple yet effective policy structure to integrate
any number of diverse control strategies to automate the
cumbersome parameter tuning (as found in model-based
control) through training in simulation.

The paper is structured as follows: In Section II, we
present the control framework and meticulously explain our
design choices. Section III showcases the results and analysis
followed by the conclusion in Section IV.

II. METHODOLOGY

In this section, we describe our control framework and
explain the working of the high-level linear policy in adher-
ence with the low-level phase controller. The experiments
were performed on the humanoid robot Digit. Digit is a 30
degrees of freedom (DoF) 3D biped developed by Agility
Robotics, USA. The total weight of the robot is 48 kg, from
which 22 kg corresponds to the upper body, and 13 kg to each
leg. The kinematic structure of Digit is extensively discussed
in our previous work [7].

A. Overview of the Control Framework

In [7], we developed a policy that enabled robust walking
by modulating an elliptical trajectory for the feet using a
linear policy. This approach limits the realisation of more
athletic behaviours since elliptical trajectories are restrictive
in nature. In our experiments, extending [7] to hopping, we
found elliptical trajectories to be inadequate, causing the
policies to fail. Gaits like hopping require more complex
trajectories, which cannot be hand-picked. Therefore, we
propose to integrate the linear policy with a model that
plans the desired template motion online once every hopping
cycle. This embedded model provides a reference trajectory
to the linear policy for executing arbitrary motions, unlike
fixed foot trajectory modulators with fixed gaits [8], thereby
extending the framework. It is worth mentioning that the
framework is independent of the chosen model and can be
readily extended to diverse models as per the task and motion
requirements. For instance, in our case, we use a SLIP
model for hopping, whereas, for more complicated motions
like backflips and parkour, we believe the approach could

be extended to centroidal and full-order models. Thus the
proposed hierarchical control framework, as shown in Fig.
2, has a model-embedded linear policy at the high level and
a phase controller, transforming the policy’s actions at the
low level. The learnt linear policy generates unscaled motor
commands for the leg joints during the stance phase and de-
sired foot placement in the flight phase. The policy’s outputs
are then transformed to the appropriate scale or target joint
angles through inverse kinematics by the phase controller
in accordance with the given phase. These controllers are
further explained in detail as follows.

B. High-Level Model Embedded Linear Policy

To generate motions with significant flight phases, we
integrate the learnable linear policy with a Spring-Loaded
Inverted Pendulum (SLIP) model as it is the fastest and
simplest model that can generate trajectories for athletic
behaviours like hopping and running in real-time [3]. A new
SLIP trajectory is generated at every touchdown with Digit’s
reduced current state as initial conditions. This trajectory
is then used as a reference by the linear policy for the
upcoming stance and flight phase. The holistic linear policy
is parameterized by a single matrix with different rows
pertaining to different outputs for stance and flight phases.
By being a part of the same policy, different feedback terms
are trained together and converge to an optimal consensus
between trajectory tracking and torso balance.

1) Trajectory Generation: The SLIP model assumes a
point mass m and a springy leg of length l0 with spring
constant k. The dynamics in polar coordinates for the SLIP
model during stance, with the foot anchored at the origin,
are given as:

mr̈ −mrθ̇ +mg cos(θ)− k(l0 − r) = 0 (1)

mr2θ̈ + 2mrṙθ̇ −mgr sin(θ) = 0 (2)

Owing to the low inertia legs of Digit, the centre of mass
can be reasonably approximated to be the base frame defined
at the hip, as most of the mass is concentrated around the
pelvis. Hence, we use the robot’s base state as the state of
the COM for SLIP. At every touchdown, the initial condition
for the SLIP model is given as:[

x ẋ z ż
]T

=
[
Xb Ẋ

d
b Zb Ż

d
b

]T
(3)

where Xb and Zb are x and z coordinates of the base
with respect to the feet, and Ẋd

b and Żd
b are the desired

longitudinal and vertical velocities, respectively. Due to the
symmetry between the liftoff and touchdown velocities, we
initialise the trajectories with the desired heading velocities.
Żd
b is calculated based on the desired maximum jump height.

The dynamics equations are numerically integrated over time
to obtain a trajectory for the stance phase. It is worth
noting that the above equation is for a 2D SLIP model
where the motion is constrained to the sagittal plane, unlike
the unconstrained real system in 3D. However, since the

Stance

Controller

Flight

Controller

Model

Parameter

 (K)

Linear Policy

STANCE

FLIGHT

Model Embedded
Linear Policy

Phase Controller

Torque Scaling

Ankle Transmission

PD

Inverse

Kinematics

Environment

,

SLIP Reference
Trajectories

Controller Feedback

 (

)

Robot Partial State

 (

)

K

STANCE FLIGHT

TOUCH

DOWN

LIFT

OFF

FLIGHT

Fig. 2: Figure showing the control framework (left) and the SLIP trajectory (right) with flight and stance phases separated
by touchdown and liftoff

policy is trained to learn stabilizing behaviours for the full-
order system in simulation, it is unaffected by the fidelity
of the template model, thereby proving its robustness and
generality.

2) Observation Space: In [7], the effectiveness of using
a reduced observation space was exhibited. Keeping up with
the same philosophy, we formulate the observation space
with torso orientation and trajectory tracking errors, allowing
the linear policy to marginally deviate from the reference
trajectories and trade-off accurate tracking for torso balance.
Thus observation space is a 13-dimensional state vector
defined as-

st = [ψ, θ, ψ̇, θ̇, eϕ, exb
, eyb

, ezb , eẋb
, eẏb

, eżb ,

e ˙̄xb
, xnp, 1]

T
(4)

Where ψ and θ are the torso roll and pitch, and ψ̇ and θ̇ are
the corresponding angular velocities. e□b

= □d −□, where
□ ϵ {ϕ, xb, yb, zb, ẋb, ẏb, żb}, are the current heading yaw,
base positions and linear velocities with respect to the feet
and □d ϵ {ϕd, xdb , ydb , zdb , ẋdb , ẏdb , żdb }, are the corresponding
desired terms which are obtained from the SLIP trajectory,
and user commands. e ˙̄xb

is the error between the mean
velocity of a hopping step and the desired velocity of the base
along the heading direction. Akin to [15], xnp is the nominal
foot position calculated as xnp = 0.5 ˙̄xbTs, where Ts is the
time period for the last stance phase. However, by providing
e ˙̄xb

and xnp as inputs to the policy, we learn the relative
weighting between the nominal and feedback terms through
training and thereby enabling it to handle early contacts. A
normalised constant (1) is passed for estimating the stiffness
constant k for the SLIP model as it is independent of any of
the system’s state variables.

3) Action Space: The action space of the policy can be
broadly classified into four parts:

a) Torque actions for stance: During stance, the policy
outputs unscaled torques for the hip (hr, hp) and knee (kp)
motors. Since there is a significant difference in the magni-
tude of torques produced by position and velocity feedback,
denoted by ap□ and av□ respectively, where □ ϵ {hr, hp, kp},
we assign separate dedicated rows in the policy to output
the corresponding torques and thereby keeping the matrix
elements normalised. These torques are then appropriately

scaled and added together to form the final joint torques.
An additional action alkp is also inferred from the policy
for maintaining lateral stability. This action is added to the
knee joint of one leg and subtracted from the other. The
resulting torque difference accounts for nullifying the lateral
disturbances.

b) Ankle transmission for stance: For the ankles, the
policy provides the target roll and pitch values with respect
to the current roll and pitch of the ankle. These actions are
denoted as q́dap and q́dar.

c) Target foot placement during flight: The policy
estimates a fixed target foot position for the touchdown with
dynamic adjustments to correct for external disturbances. The
fixed target position is denoted as xf and the dynamic offsets
along the x and y directions are denoted as x́f and ýf . A
target joint angle for the hip yaw motor, denoted by qdhy , is
also estimated to control the desired heading yaw.

d) Model parameter for SLIP: The policy also esti-
mates the stiffness constant k for the SLIP model. This is
done to identify a spring constant that would closely mimic
the dynamics in the template motion.

Hence, the action space is a 12-dimensional vector defined
as-

at = [aphr, a
v
hr, a

p
hp, a

v
hp, a

p
kp, a

v
kp, a

l
kp, q́

d
ap,

q́dar, xf , x́f , ýf , q
d
hy, k]

T
(5)

4) Policy Matrix Sparsification: With [7], we observed
that sparsification of the matrix could help reduce the over-
fitting of the policy to the simulation dynamics, speed up
the training, and enhance the transfer to hardware. In our
current work, the sparsification becomes even more critical
as we combine actions for different phases in the same
policy. For example, the flight phase touchdown position
commands are not related to the stance phase’s trajectory
errors. Therefore, we learn only the relevant parameters that
correlate an observation to action and set all the other terms
to 0, as seen in Fig. 3. We give a warm start to the training
by initialising it with a sub-optimal policy that is able to hop
for a step or two before falling.

St
an
ce

Fl
ig
ht

Fig. 3: Figure showing the trained policy matrix with
values denoted as a color map. The symbol ‘*’ marks the

non-zero terms that were optimised through ARS.

C. Low-Level Phase Controller

The hopping gait has two phases: stance and flight, which
are separated by the events of touchdown and lift-off. At the
low level, the phase controller is responsible for switching
the control received from the policy between the different
phases and processing the actions accordingly.

While landing from the flight, the touchdown is detected
through the compression in a passive spring attached to the
shin of the Digit’s leg. When Digit reaches back to a height
equal to that of the touchdown, we assume that the lift-off has
occurred in accordance with the template model. The phase
controller processes the actions from the policy depending
upon the phase as follows.

Stance: During stance, the gait controller performs torque
scaling and ankle regulation.

a) Torque Scaling: As discussed before, we scale the
unscaled actions and do a weighted sum of the position, and
velocity feedback torques as follows,

τi = Sp
i a

p
i + Sv

i a
v
i (6)

where τi is the motor torque, Sp
i and Sv

i are the scaling
factors for position and velocity components, respectively.
i ϵ {hr, hp}. For the knee pitch, we have:

τkp = Sp
kp(a

p
kp + Falkp) + Sv

kpa
v
kp (7)

The value of F is defined as, F = 1 for the right leg, and
F = −1 for the left leg. Hence, the left and the right knee
can have a difference in torque, allowing for auxiliary and
asymmetric lateral stability.

b) Ankle Transmission: As the generated SLIP trajec-
tories assume a point-foot and do not consider 2 DoF at the
ankle, we need an explicit transmission for the ankle due to
the non-linear relation between the desired angles and the
ankle commands [7]. The actuation at the ankle is crucial
in maintaining Digit’s balance during stance. The target roll

and pitch for the ankle are obtained as follows.

qdar = qar + F(q́dar −Qoff
ar) (8)

qdap = qap + F(q́dap −Qoff
ap), (9)

where qdar and qdap are the desired angles and Qoff
ar =

0.366 rad and Qoff
ap = 0.04 rad are the joint offsets in

accordance to the kinematic assembly for the ankle joints.
The desired roll and pitch commands for the ankles are trans-
formed into the motor commands through ankle kinematics
approximated using non-linear regression.

Flight: During the flight phase, the phase controller re-
ceives the target x foot position from the policy. We consider
a straight-line trajectory for the feet from the position at the
liftoff to the target touchdown. This trajectory is dynamically
altered at each control step with foot placement residues, x́f
and ýf . Ideally, the trajectory is to be tracked in time TF ,
which is the average time of flight of the gait. At time t
during the flight phase, the target foot positon is calculated
as follows.

xdf =

{
Sxf

xf + Sx́f
x́f , if t > TF

(Sxf
xf−xi

f)t

TF
+ xif + Sx́f

x́f , if t ≤ TF
(10)

ydf =

{
Sýf

ýf + Y off
f , for left leg

Sýf
ýf − Y off

f , for right leg
(11)

zdf = Zoff
f (12)

where Sxf
= 20, Sx́f

= 10 and Sýf
= 20 are the scaling

factors for the actions from the policy, xif is the feet position
with respect to the base at liftoff, and Y off

f = 0.1m and
Zoff
f = −1.0m are the offsets for the feet with respect to

the base.
The desired joint positions are then obtained using Inverse

Kinematics (IK) and tracked with a joint-level PD controller.
The ankle joints are kept passive and the target angle for hip
yaw motors (qdhy), is directly tracked with a PD controller.
It is to be noted that all the scaling factors were constant for
different simulation and hardware settings.

D. Policy Training

Similar to our previous work, we use Augmented Random
Search (ARS) for training the linear policy. Unlike generic
ARS, we only search in a sub-space of the parameter space,
Rm×n. The linear policies trained using ARS are found to
be effective for solving various continuous-control problems
and require minimal tuning of hyper-parameters [11].

1) Reward Function: The reward function is formulated
with the objective to keep the torso upright while having
sufficiently long flight phases and simultaneously tracking
the commanded heading velocities. It is defined as,

r = Gw1
(ψ) +Gw2

(θ) +Gw3
(eϕ) +Gw4

(e ˙̄xb
) + fr (13)

where fr = 0.2 in the flight phase and fr = 0.0 otherwise.
The mapping G : R → [0, 1] is the Gaussian kernel given by
Gwj

(u) = exp(−wj × u2), wj > 0.

0 5 10 15 20 25 30

Time (sec)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
o
rs

o
V

e
lo

ci
ty

(m
/
se

c)

ẋb
ẏb

ẋdb

ẏdb

0 10 20 30 40

Time (sec)

−100

−75

−50

−25

0

25

50

75

O
ri

e
n
ta

ti
o
n

(D
e
g
re

e
s)

φ

φd

θ

Fig. 4: Figure showing command tracking in MuJoCo
simulation. The longitudinal and lateral velocities, and the

heading yaw are presented.

2) Training Curriculum: We only train on flat ground
across arbitrary heading velocity commands. The com-
manded heading velocity is uniformly sampled from the
range [0.0, 0.2] and either remains constant throughout the
episode or increases with a step of 0.1 m/sec up to 0.2
m/sec every 5 seconds. Alongside, we also train for com-
manded lateral velocities sampled from [−0.05, 0.05] m/sec
and commanded heading yaw varied randomly in a quasi-
static way. The length of each episode is 15 seconds. An
episode is terminated if the robot topples or the robot’s height
decreases below a certain threshold, or if the maximum
episode length is reached. Additionally, we introduce noise
in the observation, randomise the scaling factors in the phase
controller and arbitrarily reduce the saturation limits for
torques to further robustify the policy.

III. RESULTS

This section presents the simulation results, sim-to-sim
transfer of the policies, and the preliminary hardware exper-
iments conducted. We use a custom gym environment with
the MuJoCo physics engine [19] for training our policies in
simulation. We show the sim-to-sim transfer to the Agility
Robotics (AR) Simulator, a simulation platform proprietary
to AR. We also show preliminary sim-to-real transfer of the
policies to the hardware.

A. MuJoCo Simulation Results

1) Performance Analysis: We train the policies on flat
terrain for varied forward and lateral velocities, and yaw
control. A 2D SLIP model is used to produce trajectories
in the sagittal plane and the template motion is extended

0.364 0.366 0.368 0.370
Left Hip Roll Position (rad)

−0.10

−0.05

0.00

0.05

0.10

A
n

g
u

la
r

V
e
l

(r
a
d

/
se

c)

Flat Terrain

Incline Slope

Decline Slope

0.36 0.37 0.38 0.39 0.40 0.41
Left Hip Roll Position (rad)

−1.0

−0.5

0.0

0.5

A
n

g
u

la
r

V
e
l

(r
a
d

/
se

c)

Before

During

After

0.0 0.1 0.2 0.3
Left Hip Pitch Position (rad)

−4

−2

0

2

A
n

g
u

la
r

V
e
l

(r
a
d

/
se

c)

Flat Terrain

Incline Slope

Decline Slope

0.1 0.2 0.3
Left Hip Pitch Position (rad)

−4

−2

0

2

A
n

g
u

la
r

V
e
l

(r
a
d

/
se

c)

Before

During

After

−0.2 −0.1 0.0 0.1 0.2 0.3
Left Knee Pitch Position (rad)

−5.0

−2.5

0.0

2.5

5.0

A
n

g
u

la
r

V
e
l

(r
a
d

/
se

c)

Flat Terrain

Incline Slope

Decline Slope

−0.1 0.0 0.1 0.2
Left Knee Pitch Position (rad)

−7.5

−5.0

−2.5

0.0

2.5

5.0

A
n

g
u

la
r

V
e
l

(r
a
d

/
se

c)

Before

During

After

Fig. 5: Figure showing how the limit cycles for the phase
portraits of mentioned joints differ for different slopes (left)
and phase portraits settling into a stable limit cycle after

disturbance from the uneven terrain (right)

to a complex 3D system like Digit, which is capable of
performing lateral hops and adjusting the heading angle, by
virtue of the policy design. The policy predicts actions for
a single leg. As a result of the symmetric structure of Digit
and most humanoid robots, the commands for one leg can
be mirrored to the other leg.

We are able to achieve accurate tracking of heading
velocities from 0 m/sec up to 0.52 m/sec and lateral velocities
from −0.05 m/sec up to 0.05 m/sec as shown in Fig. 4.
The heading yaw can be controlled freely, allowing the
coverage of the complete 3D space with an omnidirectional
heading. Maximum jumping height is increased with in-
creasing longitudinal velocities to provide long enough flight
phases for the feet to transition to the touchdown position.
The maximum jumping height varies from 0.04 meters at 0
m/sec to 0.15 meters at 0.52 m/sec heading velocity. The
main challenges in increasing the maximum jumping height
were torso pitch disturbances and motor torque saturation
at lower and higher longitudinal velocities, respectively. In
adherence to the well-trained policy, the torso’s oscillations
were minimal and contained within the following ranges :
ψ ∈ (−1◦, 1◦), θ ∈ (−5◦,+7◦), ϕ ∈ (−1◦, 1◦). It can also
be observed from Fig. 6 how the trained policy roughly
establishes a proportional relationship between the heading
velocity and the target foot placement during the flight phase.

2) Policy Generalisation and Robustness: We tested the
policy trained on flat terrain under different terrain condi-
tions, and it was found to be insusceptible to minor changes
in the terrain. The policy performed well on the slopes
ranging from −11◦ to 11◦ without any terrain feedback or
explicit training. The changes in the phase portraits for the
slopes as compared to the flat terrain is shown in Fig. 5
(left). The policy successfully handled step disturbances in
the terrain of up to 7 cm in height. The limit cycles of the

Raibert’s
Con-
troller

SLIP
Con-
troller

Initial
Policy

Trained
Policy

Max Horizontal Velocity
(With perpetual hopping)

0.3
m/sec

0.3
m/sec

0.2
m/sec

0.5
m/sec

Time to destabilise (When
a 40N forward force is ap-
plied continuously during ev-
ery stance phase)

3 sec 5 sec 1 sec
Hops
Perpetu-
ally

Time to destabilise (When
a 30N sideways force is ap-
plied continuously during ev-
ery stance phase)

2 sec 2 sec 3 sec 14 sec

Max Pitch Disturbance (For
velocities up to 0.2 m/sec) 6 Deg 6 Deg 8 Deg 2.5 Deg

Hopping on Inclined Surface
(Max Slope) 2 Deg 7 Deg 5 Deg 11 Deg

Hopping on Declined Sur-
face (Max Slope) 4 Deg 7 Deg 7 Deg 11 Deg

TABLE I: Trained policy comparison with initial policy, Raibert’s
controller and task-space SLIP trajectory tracking controller on

different metrics.

0.00 0.02 0.04 0.06 0.08
Foot Target (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
ea

d
in

g
V

el
oi

ct
y

(m
/s

ec
)

Foot Placement vs Linear Velocity

Trained Policy

Initial Policy

Raibert’s

SLIP

Fig. 6: Target Foot Placement during Flight
phase for different controllers.

leg joints can be seen reacting to the terrain disturbances in
Fig. 5 (right). The policy also rejected longitudinal forces
ranging from −40 N to 40 N and lateral forces ranging from
−30 N to 30 N applied periodically during the stance phase.
All the mentioned results are presented in the accompanying
video submission.

3) Comparison with the Baseline: To further evaluate the
performance of the trained policy, we compare it against two
manually tuned controllers. 1) Raibert’s Linear Hopping with
foot placement and attitude correction. 2) Task-space SLIP
trajectory tracking with look-up table for foot placement.

Both controllers work only with active ankle and torso
regulations which are manually tuned. For the Raibert’s
hopping controller, as the natural structure of Digit doesn’t
resemble a single springy leg, we assume legs to function
like SLIP template model and perform energy shaping to
jump to the desired height. We compare the controllers on
different metrics which act as indicators of robustness and
reliability. The results are shown in I. It can be observed
that the trained policy performs substantially better on all
the metrics.

B. Sim-to-sim transfer

To further evaluate the generalisation of the policy to
different dynamic properties of the robot and the environ-
ment, we tested the policy in the AR simulator with no
additional tuning to the policy parameters. The AR simulator
is a high-fidelity real-time simulator that includes parameters
corresponding to the actual hardware such as joint friction,
communication delays, state estimation, etc.

In addition, testing the policy in the AR simulator results
in an additional layer of safety that is important in the sim-
to-real process to prevent non-expected behaviors on the real
hardware.

We perform tests for velocity tracking and control of the
heading angle, and robustness to challenging terrains. The
performance of the learned policy for velocity tracking and
control of heading angle are presented in Fig. 7. The policy

effectively tracked longitudinal velocities from 0 m/sec up to
0.3 m/sec and lateral velocities from −0.05 m/sec up to 0.05
m/sec. We notice that the maximum velocity reached by the
policy in the AR simulator is lower than the one obtained
in the custom MuJoco simulator, which is a common effect
in sim-to-sim and sim-to-real transfer, specially for dynamic
maneuvers [1]. The combination of this commands allow the
robot to jump in diagonal directions. In addition, the policy
successfully tracked the continuous variations of the desired
heading angle while jumping forward. Finally, we also tested
the policy under different terrain conditions. The controller
successfully traversed through challenging terrains, including
slopes in a range of [−10, 10] degrees. These results can be
seen in the accompanying video submission.

0 10 20 30 40 50 60 70
Time (sec)

0.0

0.1

0.2

0.3

T
o
rs

o
V

e
lo

ci
ty

(m
/
se

c)

ẋb

ẏb

ẋdb

ẏdb

0 10 20 30
Time (sec)

−40

−20

0

20

40

O
ri

e
n
ta

ti
o
n

(D
e
g
re

e
s)

φ

φd

θ

Fig. 7: Figure showing velocity and heading angle tracking
in the AR simulator.

C. Preliminary hardware tests
We present some preliminary results of the testing of the

leaned policy in the hardware of the Digit robot. Given the
highly dynamic behaviors performed by the policy, there
exists critical components that affect the performance of
the policy in the real hardware, being one of them the
state estimation algorithm used to compute the position and
velocity of the robot.

Unfortunately, during the hardware tests, we found that
the default state estimation algorithm included in the closed-
source low-level API of the robot is sensitive to the takeoff
and touchdown events. In particular, during the flight-phase
and landing, there is a significant drift on the estimation of
the vertical position and velocity of the robot’s base. This
estimation errors introduce significant disturbances to the
policy input, causing high variance in the policy outputs,
which results in instability of the whole system.

To address this problem, we use Forward Kinematics
(FK) to compute the height of the robot’s base during the
double support phase and compensate for the drifting in the
state estimation. Although the resulting motion is not highly
dynamic like the one obtained in simulation, the robot is able
to take jumps with prolonged phases of double support, in
which the FK-based estimation of the robot’s height is used
to compensate for the drifting in the state estimator with the
addition of a balancing controller to improve the stability of
the stance phase.

Future work will focus on improving the state estimation
algorithm to obtain reliable measurements of the robot’s state
that fully enables the deployment of the learned policy. The
preliminary results for the hardware tests can be seen in the
accompanying video submission.

IV. CONCLUSION

In summary, we presented a linear policy integrated with
the SLIP template model, capable of performing robust and
continuous hopping motion in 3D space. We exhibit the
generalisation of the linear policy through successful trials
on adverse simulation conditions, sim-to-sim transfer to a
high-fidelity real-time simulator and preliminary experiments
on the hardware. The proposed control framework presents a
generic approach for performing agile and dynamic manoeu-
vres. Although, in this work we use SLIP model to demon-
strate a particular case of hopping, we believe our approach
can be readily extended to more complex behaviours.

Future research directions include extensive testing on
the hardware with improved state estimation and integration
of more complex models in the linear policy for more
dynamic behaviours like running. The preliminary results for
the hardware tests can be seen in the accompanying video
submission. An extended version of the video with addi-
tional experiments can be seen here: https://youtu.
be/iSK2JeBEPLw

REFERENCES

[1] Ryan Batke, Fangzhou Yu, Jeremy Dao, Jonathan Hurst, Ross L.
Hatton, Alan Fern, and Kevin Green. Optimizing bipedal maneuvers
of single rigid-body models for reinforcement learning, 2022.

[2] Miroslav Bogdanovic, Majid Khadiv, and Ludovic Righetti. Model-
free reinforcement learning for robust locomotion using demonstra-
tions from trajectory optimization, 2021.

[3] Yu-Ming Chen and Michael Posa. Optimal reduced-order modeling
of bipedal locomotion. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 8753–8760, 2020.

[4] Matthew Chignoli, Donghyun Kim, Elijah Stanger-Jones, and Sang-
bae Kim. The mit humanoid robot: Design, motion planning, and
control for acrobatic behaviors. In 2020 IEEE-RAS 20th International
Conference on Humanoid Robots (Humanoids), pages 1–8, 2021.

[5] Yukai Gong and Jessy Grizzle. One-step ahead prediction of angular
momentum about the contact point for control of bipedal locomotion:
Validation in a lip-inspired controller. In International Conference on
Robotics and Automation (ICRA), 2021.

[6] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. Mini cheetah: A
platform for pushing the limits of dynamic quadruped control. In 2019
International Conference on Robotics and Automation (ICRA), pages
6295–6301, 2019.

[7] Lokesh Krishna, Guillermo A. Castillo, Utkarsh A. Mishra, Ayonga
Hereid, and Shishir Kolathaya. Linear policies are sufficient to realize
robust bipedal walking on challenging terrains. IEEE Robotics and
Automation Letters, 7(2):2047–2054, 2022.

[8] Lokesh Krishna, Utkarsh A. Mishra, Guillermo A. Castillo, Ayonga
Hereid, and Shishir Kolathaya. Learning linear policies for robust
bipedal locomotion on terrains with varying slopes. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 5136–5141, 2021.

[9] Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey
Levine, Glen Berseth, and Koushil Sreenath. Reinforcement learning
for robust parameterized locomotion control of bipedal robots. In IEEE
International Conference on Robotics and Automation (ICRA), Xi’an,
China, June 2021.

[10] Zhongyu Li, Jun Zeng, Akshay Thirugnanam, and Koushil Sreenath.
Bridging model-based safety and model-free reinforcement learning
through system identification of low dimensional linear models. 2022.

[11] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random
search of static linear policies is competitive for reinforcement learn-
ing. In Advances in Neural Information Processing Systems, pages
1800–1809, 2018.

[12] A. Marco, D. Baumann, M. Khadiv, P. Hennig, L. Righetti, and
S. Trimpe. Robot learning with crash constraints. IEEE Robotics
and Automation Letters, 6(2):1439–1446, February 2021.

[13] Quan Nguyen, Matthew J. Powell, Benjamin Katz, Jared Di Carlo,
and Sangbae Kim. Optimized jumping on the mit cheetah 3 robot. In
2019 International Conference on Robotics and Automation (ICRA),
pages 7448–7454, 2019.

[14] Brahayam Ponton, Majid Khadiv, Avadesh Meduri, and Ludovic
Righetti. Efficient multi-contact pattern generation with sequential
convex approximations of the centroidal dynamics. IEEE Transactions
on Robotics, Early access:1–19, February 2021.

[15] Marc H Raibert. Legged robots. Communications of the ACM,
29(6):499–514, 1986.

[16] Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan
Hurst. Blind bipedal stair traversal via sim-to-real reinforcement
learning, 2021.

[17] Jonah Siekmann, Srikar Valluri, Jeremy Dao, Lorenzo Bermillo, Helei
Duan, Alan Fern, and Jonathan Hurst. Learning memory-based control
for human-scale bipedal locomotion. In Robotics Science and Systems,
2020.

[18] R. Tedrake, T. W. Zhang, and H. S. Seung. Stochastic policy gradient
reinforcement learning on a simple 3d biped. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), volume 3, pages 2849–2854 vol.3, 2004.

[19] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5026–5033,
2012.

[20] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek. Hybrid zero
dynamics of planar biped walkers. IEEE Transactions on Automatic
Control, 48(1):42–56, Jan 2003.

https://youtu.be/iSK2JeBEPLw
https://youtu.be/iSK2JeBEPLw

	Introduction
	Methodology
	Overview of the Control Framework
	High-Level Model Embedded Linear Policy
	Trajectory Generation
	Observation Space
	Action Space
	Policy Matrix Sparsification

	Low-Level Phase Controller
	Policy Training
	Reward Function
	Training Curriculum

	Results
	MuJoCo Simulation Results
	Performance Analysis
	Policy Generalisation and Robustness
	Comparison with the Baseline

	Sim-to-sim transfer
	Preliminary hardware tests

	Conclusion
	References

